scispace - formally typeset
Search or ask a question

Showing papers in "Drug Metabolism and Disposition in 2013"


Journal ArticleDOI
TL;DR: In vitro studies demonstrate a low propensity for DTG to be a perpetrator of clinical drug interactions and provide a basis for predicting when other drugs could result in a drug interaction with DTG.
Abstract: Dolutegravir (DTG; S/GSK1349572) is a potent HIV-1 integrase inhibitor with a distinct resistance profile and a once-daily dose regimen that does not require pharmacokinetic boosting. This work investigated the in vitro drug transport and metabolism of DTG and assessed the potential for clinical drug-drug interactions. DTG is a substrate for the efflux transporters P-glycoprotein (Pgp) and human breast cancer resistance protein (BCRP). Its high intrinsic membrane permeability limits the impact these transporters have on DTG's intestinal absorption. UDP-glucuronosyltransferase (UGT) 1A1 is the main enzyme responsible for the metabolism of DTG in vivo, with cytochrome P450 (P450) 3A4 being a notable pathway and UGT1A3 and UGT1A9 being only minor pathways. DTG demonstrated little or no inhibition (IC(50) values > 30 μM) in vitro of the transporters Pgp, BCRP, multidrug resistance protein 2, organic anion transporting polypeptide 1B1/3, organic cation transporter (OCT) 1, or the drug metabolizing enzymes CYP1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 3A4, UGT1A1, or 2B7. Further, DTG did not induce CYP1A2, 2B6, or 3A4 mRNA in vitro using human hepatocytes. DTG does inhibit the renal OCT2 (IC(50) = 1.9 μM) transporter, which provides a mechanistic basis for the mild increases in serum creatinine observed in clinical studies. These in vitro studies demonstrate a low propensity for DTG to be a perpetrator of clinical drug interactions and provide a basis for predicting when other drugs could result in a drug interaction with DTG.

224 citations


Journal ArticleDOI
TL;DR: This study demonstrates the usefulness of immortalized hepatocytes (Fa2N-4 cells) for determining the lysosomal sequestration of lipophilic amines.
Abstract: Lipophilic (logP > 1) and amphiphilic drugs (also known as cationic amphiphilic drugs) with ionizable amines (pKa > 6) can accumulate in lysosomes, a process known as lysosomal trapping. This process contributes to presystemic extraction by lysosome-rich organs (such as liver and lung), which, together with the binding of lipophilic amines to phospholipids, contributes to the large volume of distribution characteristic of numerous cardiovascular and central nervous system drugs. Accumulation of lipophilic amines in lysosomes has been implicated as a cause of phospholipidosis. Furthermore, elevated levels of lipophilic amines in lysosomes can lead to high organ-to-blood ratios of drugs that can be mistaken for active drug transport. In the present study, we describe an in vitro fluorescence-based method (using the lysosome-specific probe LysoTracker Red) to identify lysosomotropic agents in immortalized hepatocytes (Fa2N-4 cells). A diverse set of compounds with various physicochemical properties were tested, such as acids, bases, and zwitterions. In addition, the partitioning of the nonlysosomotropic atorvastatin (an anion) and the lysosomotropics propranolol and imipramine (cations) were quantified in Fa2N-4 cells in the presence or absence of various lysosomotropic or nonlysosomotropic agents and inhibitors of lysosomal sequestration (NH4Cl, nigericin, and monensin). Cellular partitioning of propranolol and imipramine was markedly reduced (by at least 40%) by NH4Cl, nigericin, or monensin. Lysosomotropic drugs also inhibited the partitioning of propranolol by at least 50%, with imipramine partitioning affected to a lesser degree. This study demonstrates the usefulness of immortalized hepatocytes (Fa2N-4 cells) for determining the lysosomal sequestration of lipophilic amines.

191 citations


Journal ArticleDOI
TL;DR: Results provide conclusive evidence of the impact that active efflux at the BBB has on the delivery of molecularly targeted therapy to different tumor regions in glioma, and support the possibility that the repeated failure of clinical trials of new drugs for gliomas may be in part due to a failure to achieve effective concentrations in invasive tumor cells that reside behind an intact BBB.
Abstract: Despite aggressive treatment with radiation and chemotherapy, recurrence of glioblastoma multiforme (GBM) is inevitable. The objective of this study was to show that the blood-brain barrier (BBB), through a combination of tight junctions and active efflux transporters in the brain microvasculature, can significantly restrict delivery of molecularly targeted agents to invasive glioma cells. Transgenic mice lacking P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) were used to study efflux of erlotinib at the BBB. A U87 rat xenograft model of GBM was used to investigate the regional distribution of erlotinib to the tumor, and brain regions surrounding the tumor. The effect of concurrent administration of elacridar on regional tumor distribution of erlotinib was evaluated. We show that erlotinib transport across an intact BBB is significantly restricted due to P-gp- and Bcrp-mediated efflux transport. We then show that the BBB is sufficiently intact in areas of brain adjacent to the tumor core to significantly restrict erlotinib delivery. Inhibition of P-gp and Bcrp by the dual inhibitor elacridar dramatically increased erlotinib delivery to the tumor core, rim, and normal brain. These results provide conclusive evidence of the impact that active efflux at the BBB has on the delivery of molecularly targeted therapy to different tumor regions in glioma. These data also support the possibility that the repeated failure of clinical trials of new drugs for gliomas may be in part due to a failure to achieve effective concentrations in invasive tumor cells that reside behind an intact BBB.

152 citations


Journal ArticleDOI
TL;DR: In this article, a series of articles address the predictability, mechanisms, and magnitude of changes in drug metabolism and transport processes during pregnancy and highlight state-of-the-art approaches to studying mechanisms of drug disposition during pregnancy, and illustrate the use and integration of data from in vitro models, animal studies and human clinical studies.
Abstract: There is increasing evidence that pregnancy alters the function of drug-metabolizing enzymes and drug transporters in a gestational-stage and tissue-specific manner. In vivo probe studies have shown that the activity of several hepatic cytochrome P450 enzymes, such as CYP2D6 and CYP3A4, is increased during pregnancy, whereas the activity of others, such as CYP1A2, is decreased. The activity of some renal transporters, including organic cation transporter and P-glycoprotein, also appears to be increased during pregnancy. Although much has been learned, significant gaps still exist in our understanding of the spectrum of drug metabolism and transport genes affected, gestational age–dependent changes in the activity of encoded drug metabolizing and transporting processes, and the mechanisms of pregnancy-induced alterations. In this issue of Drug Metabolism and Disposition, a series of articles is presented that address the predictability, mechanisms, and magnitude of changes in drug metabolism and transport processes during pregnancy. The articles highlight state-of-the-art approaches to studying mechanisms of changes in drug disposition during pregnancy, and illustrate the use and integration of data from in vitro models, animal studies, and human clinical studies. The findings presented show the complex inter-relationships between multiple regulators of drug metabolism and transport genes, such as estrogens, progesterone, and growth hormone, and their effects on enzyme and transporter expression in different tissues. The studies provide the impetus for a mechanism- and evidence-based approach to optimally managing drug therapies during pregnancy and improving treatment outcomes.

149 citations


Journal ArticleDOI
TL;DR: Ellens et al. as discussed by the authors established a P-glycoprotein IC50 working group with 23 participating pharmaceutical and contract research laboratories and one academic institution to assess interlaboratory variability in P-gp IC50 determinations.
Abstract: A P-glycoprotein (P-gp) IC50 working group was established with 23 participating pharmaceutical and contract research laboratories and one academic institution to assess interlaboratory variability in P-gp IC50 determinations. Each laboratory followed its in-house protocol to determine in vitro IC50 values for 16 inhibitors using four different test systems: human colon adenocarcinoma cells (Caco-2; eleven laboratories), Madin-Darby canine kidney cells transfected with MDR1 cDNA (MDCKII-MDR1; six laboratories), and Lilly Laboratories Cells—Porcine Kidney Nr. 1 cells transfected with MDR1 cDNA (LLC-PK1-MDR1; four laboratories), and membrane vesicles containing human P-glycoprotein (P-gp; five laboratories). For cell models, various equations to calculate remaining transport activity (e.g., efflux ratio, unidirectional flux, net-secretory-flux) were also evaluated. The difference in IC50 values for each of the inhibitors across all test systems and equations ranged from a minimum of 20- and 24-fold between lowest and highest IC50 values for sertraline and isradipine, to a maximum of 407- and 796-fold for telmisartan and verapamil, respectively. For telmisartan and verapamil, variability was greatly influenced by data from one laboratory in each case. Excluding these two data sets brings the range in IC50 values for telmisartan and verapamil down to 69- and 159-fold. The efflux ratio-based equation generally resulted in severalfold lower IC50 values compared with unidirectional or net-secretory-flux equations. Statistical analysis indicated that variability in IC50 values was mainly due to interlaboratory variability, rather than an implicit systematic difference between test systems. Potential reasons for variability are discussed and the simplest, most robust experimental design for P-gp IC50 determination proposed. The impact of these findings on drug-drug interaction risk assessment is discussed in the companion article (Ellens et al., 2013) and recommendations are provided.

136 citations


Journal ArticleDOI
TL;DR: The utility of HepatoPac for prediction of in vivo hepatic clearance, particularly with low clearance compounds, is demonstrated, including significant turnover of meloxicam.
Abstract: Generating accurate in vitro intrinsic clearance data is an important aspect of predicting in vivo human clearance. Primary hepatocytes in suspension are routinely used to predict in vivo clearance; however, incubation times have typically been limited to 4-6 hours, which is not long enough to accurately evaluate the metabolic stability of slowly metabolized compounds. HepatoPac is a micropatterened hepatocyte-fibroblast coculture system that can be used for continuous incubations of up to 7 days. This study evaluated the ability of human HepatoPac to predict the in vivo clearance (CL) of 17 commercially available compounds with low to intermediate clearance (<12 ml/min per kg). In vitro half-life for disappearance of each compound was converted to hepatic clearance using the well stirred model, with and without correction for plasma protein binding. Hepatic CL, using three individual donors, was accurately predicted for 10 of 17 compounds (59%; predicted clearance within 2-fold of observed human in vivo clearance values). The accuracy of prediction increased to 76% (13 of 17 compounds) with an acceptance criterion defined as within 3-fold. When considering only low clearance compounds (<5 ml/min per kg), which represented 10 of the 17 compounds, the accuracy of prediction was 60% within 2-fold and 90% within 3-fold. In addition, the turnover of three slowly metabolized compounds (alprazolam, meloxicam, and tolbutamide) in HepatoPac was directly compared with turnover in suspended hepatocytes. The turnover of alprazolam and tolbutamide was approximately 2-fold greater using HepatoPac compared with suspended hepatocytes, which was roughly in line with the extrapolated values (correcting for the longer incubation time and lower cell number with HepatoPac). HepatoPac, but not suspended hepatocytes, demonstrated significant turnover of meloxicam. These results demonstrate the utility of HepatoPac for prediction of in vivo hepatic clearance, particularly with low clearance compounds.

129 citations


Journal ArticleDOI
TL;DR: Differential effects of estrogen and progesterone on P450 expression are shown, suggesting involvement of different regulatory mechanisms in female hormone-mediated P450 regulation and potentially provide a basis in mechanistic understanding for altered drug metabolism during pregnancy.
Abstract: Results from clinical studies suggest that pregnancy alters hepatic drug metabolism in a cytochrome P450 (P450) isoform-specific manner, and rising concentrations of female hormones are potentially responsible for the changes. The objective of this study was to comprehensively characterize the effects of estrogen and progesterone on the expression and activity of major drug-metabolizing P450s. To this end, primary human hepatocytes were treated with estradiol and progesterone, and mRNA expression and activity levels of 10 different P450 isoforms were determined. The results showed that estradiol enhances CYP2A6, CYP2B6, and CYP3A4 expression, whereas progesterone induces CYP2A6, CYP2B6, CYP2C8, CYP3A4, and CYP3A5 expression. The induction was mainly observed when the average hormone concentrations were at the levels reached during pregnancy, suggesting that these effects are likely pregnancy-specific. Estradiol also increased enzyme activities of CYP2C9 and CYP2E1 without affecting the mRNA expression levels by unknown mechanisms. Taken together, our results show differential effects of estrogen and progesterone on P450 expression, suggesting involvement of different regulatory mechanisms in female hormone-mediated P450 regulation. Our findings potentially provide a basis in mechanistic understanding for altered drug metabolism during pregnancy.

120 citations


Journal ArticleDOI
TL;DR: It is concluded that the rapid systemic clearance and short half-life of carfilzomib limit clinically significant DDI and there were no safety signals indicative of potential drug interactions.
Abstract: Carfilzomib, an irreversible proteasome inhibitor, has a favorable safety profile and significant antitumor activity in patients with relapsed and refractory multiple myeloma (MM). Here we summarize the clinical pharmacokinetics (PK), metabolism, and drug-drug interaction (DDI) profile of carfilzomib. The PK of carfilzomib, infused over 2-10 minutes, was evaluated in patients with solid tumors or MM. Metabolites of carfilzomib were characterized in patient plasma and urine samples. In vitro drug metabolism and DDI studies were conducted in human liver microsomes and hepatocytes. A clinical DDI study was conducted in patients with solid tumors to evaluate the effect of carfilzomib on CYP3A activity. Plasma concentrations of carfilzomib declined rapidly and in a biphasic manner after intravenous administration. The systemic half-life was short and the systemic clearance rate was higher than hepatic blood flow. Carfilzomib was cleared largely extrahepatically via peptidase cleavage and epoxide hydrolysis. Cytochrome P450-mediated metabolism played a minor role, suggesting that coadministration of P450 inhibitors or inducers is unlikely to change its PK profile. Carfilzomib showed direct and time-dependent inhibition of CYP3A in human liver microsome preparations and exposure to carfilzomib resulted in reductions in CYP3A and 1A2 gene expression in cultured human hepatocytes. However, administration of carfilzomib did not affect the PK of midazolam in patients with solid tumors, and there were no safety signals indicative of potential drug interactions. We conclude that the rapid systemic clearance and short half-life of carfilzomib limit clinically significant DDI.

118 citations


Journal ArticleDOI
TL;DR: The symposium concluded with a strong translational perspective, relating the basic science of human POR structure and function to the impacts of POR genetic variation on human drug and steroid metabolism.
Abstract: This is a report on a symposium sponsored by the American Society for Pharmacology and Experimental Therapeutics and held at the Experimental Biology 2012 meeting in San Diego, California, on April 25, 2012. The symposium speakers summarized and critically evaluated our current understanding of the physiologic, pharmacological, and toxicological roles of NADPH–cytochrome P450 oxidoreductase (POR), a flavoprotein involved in electron transfer to microsomal cytochromes P450 (P450), cytochrome b5, squalene mono-oxygenase, and heme oxygenase. Considerable insight has been derived from the development and characterization of mouse models with conditional Por deletion in particular tissues or partial suppression of POR expression in all tissues. Additional mouse models with global or conditional hepatic deletion of cytochrome b5 are helping to clarify the P450 isoform- and substrate-specific influences of cytochrome b5 on P450 electron transfer and catalytic function. This symposium also considered studies using siRNA to suppress POR expression in a hepatoma cell–culture model to explore the basis of the hepatic lipidosis phenotype observed in mice with conditional deletion of Por in liver. The symposium concluded with a strong translational perspective, relating the basic science of human POR structure and function to the impacts of POR genetic variation on human drug and steroid metabolism.

115 citations


Journal ArticleDOI
TL;DR: Assessment of hepatic expression levels and interindividual variability in a well-documented human liver tissue cohort revealed a high degree of correlation among various miRNAs, suggesting coregulation, and association analysis with ADME gene expression profiles and with cytochrome P450 gene expression phenotypes revealed numerous significant correlations.
Abstract: Genes that are important for the detoxification of drugs and other xenobiotics show a high degree of interindividual variation attributable to regulation by diverse genetic, nongenetic, and epigenetic mechanisms including microRNAs (miRNAs). We selected a set of 56 miRNAs predicted to target the 3'-untranslated region of absorption, distribution, metabolism, excretion (ADME) genes to assess their hepatic expression levels and interindividual variability in a well-documented human liver tissue cohort (n = 92), together with the well-known hepatic miRNAs miR-122, miR-21, miR-27b, and miR-148a. Quantification by stem-loop real-time reverse-transcription polymerase chain reaction confirmed high expression for these microRNAs and revealed particularly strong variability of expression (>1000-fold) for miR-539, miR-200c, miR-31, miR-15a, and miR-22. Association analysis revealed a high degree of correlation among various miRNAs, suggesting coregulation. Statistical analysis considering liver donor meta-data including correction for multiple testing revealed strongly elevated levels of miR-21, miR-34a, miR-130b, and miR-132 in cholestatic liver and of miR-21 and miR-130b during inflammation, as indicated by elevated C-reactive protein levels in serum. Although none of the miRNAs was strongly associated with sex, several miRNAs, including miR-34a and miR-200a/b, were positively correlated with age. Association analysis with ADME gene expression profiles and with cytochrome P450 gene expression phenotypes (mRNA, protein, enzymatic activity) revealed numerous significant correlations. Negatively affected protein and/or activity levels were observed for CYP1A1 (e.g., miR-132, miR-142-3p, miR-21), CYP2A6 (miR-142-3p, miR-21), CYP2C19 (e.g., miR-130b, miR-185, miR-34a), and CYP2E1 (miR-10a, let-7g, miR-200c). These data should be useful to further elucidate regulatory functions of miRNAs in liver pathophysiology and regulation of ADME gene expression.

112 citations


Journal ArticleDOI
TL;DR: The data suggest that ertugliflozin is well absorbed in humans, and eliminated largely via glucuronidation, suggestive of moderate metabolic elimination in humans.
Abstract: The disposition of ertugliflozin (PF-04971729), an orally active selective inhibitor of the sodium-dependent glucose cotransporter 2, was studied after a single 25-mg oral dose of [14C]-ertugliflozin to healthy human subjects. Mass balance was achieved with approximately 91% of the administered dose recovered in urine and feces. The total administered radioactivity excreted in feces and urine was 40.9% and 50.2%, respectively. The absorption of ertugliflozin in humans was rapid with a Tmax at ∼1.0 hour. Of the total radioactivity excreted in feces and urine, unchanged ertugliflozin collectively accounted for ∼35.3% of the dose, suggestive of moderate metabolic elimination in humans. The principal biotransformation pathway involved glucuronidation of the glycoside hydroxyl groups to yield three regioisomeric metabolites, M4a, M4b, and M4c (∼39.3% of the dose in urine), of which M4c was the major regioisomer (∼31.7% of the dose). The structure of M4a and M4c were confirmed to be ertugliflozin -4-O-β- and -3-O-β-glucuronide, respectively, via comparison of the HPLC retention time and mass spectra with authentic standards. A minor metabolic fate involved oxidation by cytochrome P450 to yield monohydroxylated metabolites M1 and M3 and des-ethyl ertugliflozin (M2), which accounted for ∼5.2% of the dose in excreta. In plasma, unchanged ertugliflozin and the corresponding 4-O-β- (M4a) and 3-O-β- (M4c) glucuronides were the principal components, which accounted for 49.9, 12.2, and 24.1% of the circulating radioactivity. Overall, these data suggest that ertugliflozin is well absorbed in humans, and eliminated largely via glucuronidation.

Journal ArticleDOI
TL;DR: The expression of specific UGT and SULT isoforms appears to be differentially regulated, whereas sulfonation of APAP is disrupted during progression of NAFLD.
Abstract: The UDP-glucuronosyltransferases (UGTs) and sulfotransferases (SULTs) represent major phase II drug-metabolizing enzymes that are also responsible for maintaining cellular homeostasis by metabolism of several endogenous molecules. Perturbations in the expression or function of these enzymes can lead to metabolic disorders and improper management of xenobiotics and endobiotics. Nonalcoholic fatty liver disease (NAFLD) represents a spectrum of liver damage ranging from steatosis to nonalcoholic steatohepatitis (NASH) and cirrhosis. Because the liver plays a central role in the metabolism of xenobiotics, the purpose of the current study was to determine the effect of human NAFLD progression on the expression and function of UGTs and SULTs in normal, steatosis, NASH (fatty), and NASH (not fatty/cirrhosis) samples. We identified upregulation of UGT1A9, 2B10, and 3A1 and SULT1C4 mRNA in both stages of NASH, whereas UGT2A3, 2B15, and 2B28 and SULT1A1, 2B1, and 4A1 as well as 3'-phosphoadenosine-5'-phosphosulfate synthase 1 were increased in NASH (not fatty/cirrhosis) only. UGT1A9 and 1A6 and SULT1A1 and 2A1 protein levels were decreased in NASH; however, SULT1C4 was increased. Measurement of the glucuronidation and sulfonation of acetaminophen (APAP) revealed no alterations in glucuronidation; however, SULT activity was increased in steatosis compared with normal samples, but then decreased in NASH compared with steatosis. In conclusion, the expression of specific UGT and SULT isoforms appears to be differentially regulated, whereas sulfonation of APAP is disrupted during progression of NAFLD.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the transport characteristics of apixaban (1-(4-methoxyphenyl)-7-oxo-6-(4-(2-oxopiperidin-1-yl)phenyl)-4,5,6,7-tetrahydro-1H-pyrazolo[3,4-c]pyridine-3-carboxamide) and to understand the impact of transporters on APixaban distribution and disposition.
Abstract: The studies reported here were conducted to investigate the transport characteristics of apixaban (1-(4-methoxyphenyl)-7-oxo-6-(4-(2-oxopiperidin-1-yl)phenyl)-4,5,6,7-tetrahydro-1H-pyrazolo[3,4-c]pyridine-3-carboxamide) and to understand the impact of transporters on apixaban distribution and disposition. In human permeability glycoprotein (P-gp)- and breast cancer resistance protein (BCRP)-cDNA-transfected cell monolayers as well as Caco-2 cell monolayers, the apparent efflux ratio of basolateral-to-apical (PcB-A) versus apical-to-basolateral permeability (PcA-B) of apixaban was >10. The P-gp- and BCRP-facilitated transport of apixaban was concentration- and time-dependent and did not show saturation over a wide range of concentrations (1-100 μM). The efflux transport of apixaban was also demonstrated by the lower mucosal-to-serosal permeability than that of the serosal-to-mucosal direction in isolated rat jejunum segments. Apixaban did not inhibit digoxin transport in Caco-2 cells. Ketoconazole decreased the P-gp-mediated apixaban efflux in Caco-2 and the P-gp-cDNA-transfected cell monolayers, but did not affect the apixaban efflux to a meaningful extent in the BCRP-cDNA-transfected cell monolayers. Coincubation of a P-gp inhibitor (ketoconazole or cyclosporin A) and a BCRP inhibitor (Ko134) provided more complete inhibition of apixaban efflux in Caco-2 cells than separate inhibition by individual inhibitors. Naproxen inhibited apixaban efflux in Caco-2 cells but showed only a minimal effect on apixaban transport in the BCRP-transfected cells. Naproxen was the first nonsteroidal antiinflammatory drug that was demonstrated as a weak P-gp inhibitor. These results demonstrate that apixaban is a substrate for efflux transporters P-gp and BCRP, which can help explain its low brain penetration, and low fetal exposures and high milk excretion in rats.

Journal ArticleDOI
TL;DR: It is demonstrated that NBP was well absorbed and extensively metabolized by multiple enzymes to various metabolites prior to urinary excretion, and can undergo β-oxidation to yield phthalide-3-acetic acid in rat liver homogenate.
Abstract: 3-n-Butylphthalide (NBP) is a cardiovascular drug currently used for the treatment of cerebral ischemia. The present study aims to investigate the metabolism, pharmacokinetics, and excretion of NBP in humans and identify the enzymes responsible for the formation of major metabolites. NBP underwent extensive metabolism after an oral administration of 200 mg NBP and 23 metabolites were identified in human plasma and urine. Principal metabolic pathways included hydroxylation on alkyl side chain, particularly at 3-, ω-1-, and ω-carbons, and further oxidation and conjugation. Approximately 81.6% of the dose was recovered in urine, mainly as NBP-11-oic acid (M5-2) and glucuronide conjugates of M5-2 and mono-hydroxylated products. 10-Keto-NBP (M2), 3-hydroxy-NBP (M3-1), 10-hydroxy-NBP (M3-2), and M5-2 were the major circulating metabolites, wherein the areas under the curve values were 1.6-, 2.9-, 10.3-, and 4.1-fold higher than that of NBP. Reference standards of these four metabolites were obtained through microbial biotransformation by Cunninghamella blakesleana. In vitro phenotyping studies demonstrated that multiple cytochrome P450 (P450) isoforms, especially CYP3A4, 2E1, and 1A2, were involved in the formation of M3-1, M3-2, and 11-hydroxy-NBP. Using M3-2 and 11-hydroxy-NBP as substrates, human subcellular fractions experiments revealed that P450, alcohol dehydrogenase, and aldehyde dehydrogenase catalyzed the generation of M2 and M5-2. Formation of M5-2 was much faster than that of M2, and M5-2 can undergo β-oxidation to yield phthalide-3-acetic acid in rat liver homogenate. Overall, our study demonstrated that NBP was well absorbed and extensively metabolized by multiple enzymes to various metabolites prior to urinary excretion.

Journal ArticleDOI
TL;DR: Experience-based perspectives are offered on the tools and methods of predicting human drug disposition using in vitro and animal data that help optimize and predict human disposition properties before nomination of candidate compounds into the drug development phase.
Abstract: Prediction of human pharmacokinetics of new drugs, as well as other disposition attributes, has become a routine practice in drug research and development. Prior to the 1990s, drug disposition science was used in a mostly descriptive manner in the drug development phase. With the advent of in vitro methods and availability of human-derived reagents for in vitro studies, drug-disposition scientists became engaged in the compound design phase of drug discovery to optimize and predict human disposition properties prior to nomination of candidate compounds into the drug development phase. This has reaped benefits in that the attrition rate of new drug candidates in drug development for reasons of unacceptable pharmacokinetics has greatly decreased. Attributes that are predicted include clearance, volume of distribution, half-life, absorption, and drug-drug interactions. In this article, we offer our experience-based perspectives on the tools and methods of predicting human drug disposition using in vitro and animal data.

Journal ArticleDOI
TL;DR: This work characterized drug transporter expression and function in AB cells and found that like blood-brain barrier cells and choroid plexus cells, AB cells highly express drug transport proteins and likely contribute to the blood-CSF drug permeation barrier.
Abstract: The subarachnoid space, where cerebrospinal fluid (CSF) flows over the brain and spinal cord, is lined on one side by arachnoid barrier (AB) cells that form part of the blood-CSF barrier. However, despite the fact that drugs are administered into the CSF and CSF drug concentrations are used as a surrogate for brain drug concentration following systemic drug administration, the tight-junctioned AB cells have never been examined for whether they express drug transporters that would influence CSF and central nervous system drug disposition. Hence, we characterized drug transporter expression and function in AB cells. Immunohistochemical analysis showed P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) in mouse AB cells but not other meningeal tissue. The Gene Expression Nervous System Atlas (GENSAT) database and the Allen Mouse Brain Atlas confirmed these observations. Microarray analysis of mouse and human arachnoidal tissue revealed expression of many drug transporters and some drug-metabolizing enzymes. Immortalized mouse AB cells express functional P-gp on the apical (dura-facing) membrane and BCRP on both apical and basal (CSF-facing) membranes. Thus, like blood-brain barrier cells and choroid plexus cells, AB cells highly express drug transport proteins and likely contribute to the blood-CSF drug permeation barrier.

Journal ArticleDOI
TL;DR: Low intracellular accumulation of ELC and TQD at nanomolar concentrations and increased uptake at micromolar concentrations are confirmed and shows that microdoses can behave pharmacokinetically differently from MDT-inhibitory doses if a compound interacts with MDTs.
Abstract: Elacridar (ELC) and tariquidar (TQD) are generally thought to be nontransported inhibitors of P-glycoprotein (Pgp) and breast cancer resistance protein (BCRP), but recent data indicate that they may also be substrates of these multidrug transporters (MDTs). The present study was designed to investigate potential transport of ELC and TQD by MDTs at the blood-brain barrier at tracer doses as used in positron emission tomography (PET) studies. We performed PET scans with carbon-11-labeled ELC and TQD before and after MDT inhibition in wild-type and transporter-knockout mice as well as in in vitro transport assays in MDT-overexpressing cells. Brain entrance of [11C]ELC and [11C]TQD administered in nanomolar tracer doses was found to be limited by Pgp- and Bcrp1-mediated efflux at the mouse blood-brain barrier. At higher, MDT-inhibitory doses, i.e., 15 mg/kg for TQD and 5 mg/kg for ELC, brain activity uptake of [11C]ELC at 25 minutes after tracer injection was 5.8 ± 0.3, 2.1 ± 0.2, and 7.5 ± 1.0-fold higher in wild-type, Mdr1a/b(−/−,) and Bcrp1(−/−) mice, respectively, but remained unchanged in Mdr1a/b(−/−)Bcrp1(−/−) mice. Activity uptake of [11C]TQD was 2.8 ± 0.2 and 6.8 ± 0.4-fold higher in wild-type and Bcrp1(−/−) mice, but remained unchanged in Mdr1a/b(−/−) and Mdr1a/b(−/−)Bcrp1(−/−) mice. Consistent with the in vivo findings, in vitro uptake assays in Pgp- and Bcrp1-overexpressing cell lines confirmed low intracellular accumulation of ELC and TQD at nanomolar concentrations and increased uptake at micromolar concentrations. As this study shows that microdoses can behave pharmacokinetically differently from MDT-inhibitory doses if a compound interacts with MDTs, conclusions from microdose studies should be drawn carefully.

Journal ArticleDOI
TL;DR: Results of this study show that, although metabolites contribute to in vivo DDIs, their relative abundance in circulation or logP values do not predict their contribution to in vitro DDI risk.
Abstract: The aim of this study was to evaluate the contribution of metabolites to drug-drug interactions (DDI) using the inhibition of CYP2C19 and CYP3A4 by omeprazole and its metabolites as a model. Of the metabolites identified in vivo, 5-hydroxyomeprazole, 5′-O-desmethylomeprazole, omeprazole sulfone, and carboxyomeprazole had a metabolite to parent area under the plasma concentration–time curve (AUCm/AUCp) ratio ≥ 0.25 when either total or unbound concentrations were measured after a single 20-mg dose of omeprazole in a cocktail. All of the metabolites inhibited CYP2C19 and CYP3A4 reversibly. In addition omeprazole, omeprazole sulfone, and 5′-O-desmethylomeprazole were time dependent inhibitors (TDI) of CYP2C19, whereas omeprazole and 5′-O-desmethylomeprazole were found to be TDIs of CYP3A4. The in vitro inhibition constants and in vivo plasma concentrations were used to evaluate whether characterization of the metabolites affected DDI risk assessment. Identifying omeprazole as a TDI of both CYP2C19 and CYP3A4 was the most important factor in DDI risk assessment. Consideration of reversible inhibition by omeprazole and its metabolites would not identify DDI risk with CYP3A4, and with CYP2C19, reversible inhibition values would only identify DDI risk if the metabolites were included in the assessment. On the basis of inactivation data, CYP2C19 and CYP3A4 inhibition by omeprazole would be sufficient to identify risk, but metabolites were predicted to contribute 30–63% to the in vivo hepatic interactions. Therefore, consideration of metabolites may be important in quantitative predictions of in vivo DDIs. The results of this study show that, although metabolites contribute to in vivo DDIs, their relative abundance in circulation or logP values do not predict their contribution to in vivo DDI risk.

Journal ArticleDOI
TL;DR: The PBPK model can predict the disposition of CYP1A2, 2D6, and 3A drugs during pregnancy and suggests that the magnitude of hepatic CYP2D6 induction during T3 ranges from 100 to 200%.
Abstract: Conducting pharmacokinetic (PK) studies in pregnant women is challenging. Therefore, we asked if a physiologically based pharmacokinetic (PBPK) model could be used to evaluate different dosing regimens for pregnant women. We refined and verified our previously published pregnancy PBPK model by incorporating cytochrome P450 CYP1A2 suppression (based on caffeine PK) and CYP2D6 induction (based on metoprolol PK) into the model. This model accounts for gestational age–dependent changes in maternal physiology and hepatic CYP3A activity. For verification, the disposition of CYP1A2–metabolized drug theophylline (THEO) and CYP2D6–metabolized drugs paroxetine (PAR), dextromethorphan (DEX), and clonidine (CLO) during pregnancy was predicted. Our PBPK model successfully predicted THEO disposition during the third trimester (T3). Predicted mean postpartum to third trimester (PP:T3) ratios of THEO area under the curve (AUC), maximum plasma concentration, and minimum plasma concentration were 0.76, 0.95, and 0.66 versus observed values 0.75, 0.89, and 0.72, respectively. The predicted mean PAR steady-state plasma concentration (Css) ratio (PP:T3) was 7.1 versus the observed value 3.7. Predicted mean DEX urinary ratio (UR) (PP:T3) was 2.9 versus the observed value 1.9. Predicted mean CLO AUC ratio (PP:T3) was 2.2 versus the observed value 1.7. Sensitivity analysis suggested that a 100% induction of CYP2D6 during T3 was required to recover the observed PP:T3 ratios of PAR Css, DEX UR, and CLO AUC. Based on these data, it is prudent to conclude that the magnitude of hepatic CYP2D6 induction during T3 ranges from 100 to 200%. Our PBPK model can predict the disposition of CYP1A2, 2D6, and 3A drugs during pregnancy.

Journal ArticleDOI
TL;DR: Apatinib was a major contributor to the overall pharmacological activity in humans and the enzymes responsible for its metabolism were identified.
Abstract: Apatinib is a new oral antiangiogenic molecule that inhibits vascular endothelial growth factor receptor-2. The present study aimed to determine the metabolism, pharmacokinetics, and excretion of apatinib in humans and to identify the enzymes responsible for its metabolism. The primary routes of apatinib biotransformation included E- and Z-cyclopentyl-3-hydroxylation, N-dealkylation, pyridyl-25-N-oxidation, 16-hydroxylation, dioxygenation, and O-glucuronidation after 3-hydroxylation. Nine major metabolites were confirmed by comparison with reference standards. The total recovery of the administered dose was 76.8% within 96 hours postdose, with 69.8 and 7.02% of the administered dose excreted in feces and urine, respectively. About 59.0% of the administered dose was excreted unchanged via feces. Unchanged apatinib was detected in negligible quantities in urine, indicating that systemically available apatinib was extensively metabolized. The major circulating metabolite was the pharmacologically inactive E-3-hydroxy-apatinib-O-glucuronide (M9-2), the steady-state exposure of which was 125% that of the apatinib. The steady-state exposures of E-3-hydroxy-apatinib (M1-1), Z-3-hydroxy-apatinib (M1-2), and apatinib-25-N-oxide (M1-6) were 56, 22, and 32% of parent drug exposure, respectively. Calculated as pharmacological activity index values, the contribution of M1-1 to the pharmacology of the drug was 5.42 to 19.3% that of the parent drug. The contribution of M1-2 and M1-6 to the pharmacology of the drug was less than 1%. Therefore, apatinib was a major contributor to the overall pharmacological activity in humans. Apatinib was metabolized primarily by CYP3A4/5 and, to a lesser extent, by CYP2D6, CYP2C9, and CYP2E1. UGT2B7 was the main enzyme responsible for M9-2 formation. Both UGT1A4 and UGT2B7 were responsible for Z-3-hydroxy-apatinib-O-glucuronide (M9-1) formation.

Journal ArticleDOI
TL;DR: Substrate-dependent inhibition of OATP1B1 was shown and it was demonstrated that E2G was the most sensitive in vitro OatP1 B1 probe substrate among three substrates tested.
Abstract: Organic anion transporting polypeptide (OATP) 1B1 plays an important role in the hepatic uptake of many drugs, and the evaluation of OATP1B1-mediated drug-drug interactions (DDIs) is emphasized in the latest DDI (draft) guidance documents from U.S. and E.U. regulatory agencies. It has been suggested that some OATP1B1 inhibitors show a discrepancy in their inhibitory potential, depending on the substrates used in the cell-based assay. In this study, inhibitory effects of 14 compounds on the OATP1B1-mediated uptake of the prototypical substrates [³H]estradiol-17β-glucuronide (E₂G), [³H]estrone-3-sulfate (E₁S), and [³H]sulfobromophthalein (BSP) were studied in OATP1B1-transfected cells. Inhibitory potencies of tested compounds varied depending on the substrates. Ritonavir, gemfibrozil, and erythromycin caused remarkable substrate-dependent inhibition with up to 117-, 14-, and 13-fold difference in their IC₅₀ values, respectively. Also, the clinically relevant OATP inhibitors rifampin and cyclosporin A exhibited up to 12- and 6-fold variation in their IC₅₀ values, respectively. Regardless of the inhibitors tested, the most potent OATP1B1 inhibition was observed when [³H]E₂G was used as a substrate. Mutual inhibition studies of OATP1B1 indicated that E₂G and E₁S competitively inhibited each other, whereas BSP noncompetitively inhibited E₂G uptake. In addition, BSP inhibited E₁S in a competitive manner, but E₁S caused an atypical kinetics on BSP uptake. This study showed substrate-dependent inhibition of OATP1B1 and demonstrated that E₂G was the most sensitive in vitro OATP1B1 probe substrate among three substrates tested. This will give us an insight into the assessment of clinically relevant OATP1B1-mediated DDI in vitro with minimum potential of false-negative prediction.

Journal ArticleDOI
TL;DR: Compared with the matched, normothermic intensive care unit patients, t1/2 of morphine was significantly higher during TH and CLtot was lower during TH for morphine, fentanyl, and propofol but not for midazolam.
Abstract: Therapeutic hypothermia (TH) may induce pharmacokinetic changes that may affect the level of sedation. We have compared the disposition of morphine, midazolam, fentanyl, and propofol in TH with normothermia in man. Fourteen patients treated with TH following cardiac arrest (33-34°C) were compared with eight matched critically ill patients (36-38°C). Continuous infusions of morphine and midazolam were stopped and replaced with infusions of fentanyl and propofol to describe elimination and start of infusion pharmacokinetics, respectively. Serial serum and urine samples were collected for 6-8 hours for validated quantification and subsequent pharmacokinetic analysis. During TH, morphine elimination half-life (t(1/2)) was significantly higher, while total clearance (CL(tot)) was significantly lower (median [semi-interquartile range (s-iqr)]): t(1/2), 266 (43) versus 168 (11) minutes, P < 0.01; CL(tot), 1201 (283) versus 1687 (200) ml/min, P < 0.01. No significant differences were seen for midazolam. CL(tot) of fentanyl and propofol was significantly lower in hypothermic patients [median (s-iqr)]: fentanyl, 726 (230) versus 1331 (678) ml/min, P < 0.05; propofol, 2046 (305) versus 2665 (223) ml/min, P < 0.05. Compared with the matched, normothermic intensive care unit patients, t(1/2) of morphine was significantly higher during TH. CL(tot) was lower during TH for morphine, fentanyl, and propofol but not for midazolam. Reducing the infusion rates of morphine, fentanyl, and propofol during TH is encouraged.

Journal ArticleDOI
TL;DR: The 4β-hydroxycholesterol ratio is comparable to midazolam clearance as a marker of CYP3A4 induction, and each may be used to evaluate CYP 3A4 induction in clinical trials evaluating drug-drug interactions for new drugs.
Abstract: CYP3A4, considered the most important enzyme in drug metabolism, is often involved in drug-drug interactions. When developing new drugs, appropriate markers for detecting CYP3A4 induction are needed. Our study compared endogenously formed 4β-hydroxycholesterol with the midazolam clearance in plasma and the 6β-hydroxycortisol/cortisol ratio in urine as markers for CYP3A4 induction. To this end, we performed a clinical trial in which 24 healthy subjects were randomized to 10, 20, or 100 mg daily doses of rifampicin for 14 days (n = 8 in each group) to achieve a low and moderate CYP3A4 induction. The CYP3A4 induction could be detected even at the lowest dose of rifampicin (10 mg) via the estimated midazolam clearance, the 4β-hydroxycholesterol ratio (both P < 0.01), and the 6β-hydroxycortisol ratio (P < 0.05). For the three dosing groups (10, 20, and 100 mg), the median fold induction from baseline was 2.0, 2.6, and 4.0 for the estimated midazolam clearance; 1.3, 1.6, and 2.5 for the 4β-hydroxycholesterol/cholesterol ratio; and 1.7, 2.9, and 3.1 for the 6β-hydroxycortisol/cortisol ratio. In conclusion, the 4β-hydroxycholesterol ratio is comparable to midazolam clearance as a marker of CYP3A4 induction, and each may be used to evaluate CYP3A4 induction in clinical trials evaluating drug-drug interactions for new drugs.

Journal ArticleDOI
TL;DR: The working group observed that evaluation of TP-DDI for anticytokine monoclonal antibodies is currently best accomplished with a clinical study in patients with inflammatory disease, and recommended in vitro human hepatocyte studies for the prediction of clinical TP- DDI.
Abstract: Drug-drug interactions (DDIs) between therapeutic proteins (TPs) and small-molecule drugs have recently drawn the attention of regulatory agencies, the pharmaceutical industry, and academia TP-DDIs are mainly caused by proinflammatory cytokine or cytokine modulator-mediated effects on the expression of cytochrome P450 enzymes To build consensus among industry and regulatory agencies on expectations and challenges in this area, a working group was initiated to review the preclinical state of the art This white paper represents the observations and recommendations of the working group on the value of in vitro human hepatocyte studies for the prediction of clinical TP-DDI The white paper was developed following a "Workshop on Recent Advances in the Investigation of Therapeutic Protein Drug-Drug Interactions: Preclinical and Clinical Approaches" held at the Food and Drug Administration White Oak Conference Center on June 4 and 5, 2012 Results of a workshop poll, cross-laboratory data comparisons, and the overall recommendations of the in vitro working group are presented herein The working group observed that evaluation of TP-DDI for anticytokine monoclonal antibodies is currently best accomplished with a clinical study in patients with inflammatory disease Treatment-induced changes in appropriate biomarkers in phase 2 and 3 studies may indicate the potential for a clinically measurable treatment effect on cytochrome P450 enzymes Cytokine-mediated DDIs observed with anti-inflammatory TPs cannot currently be predicted using in vitro data Future success in predicting clinical TP-DDIs will require an understanding of disease biology, physiologically relevant in vitro systems, and more examples of well conducted clinical TP-DDI trials

Journal ArticleDOI
TL;DR: Results indicate that hsa-miR-1291 is derived from SNORA34 and modulates cellular drug disposition and chemosensitivity through regulation of ABCC1 expression, and shall improve the understanding of microRNA-controlled epigenetic regulatory mechanisms underlying multidrug resistance and interindividual variability in pharmacokinetics.
Abstract: Multidrug resistance-associated protein 1 (MRP1/ABCC1) is an important membrane transporter that contributes to cellular disposition of many endobiotic and xenobiotic agents, and it can also confer multidrug resistance. This study aimed to investigate the role of human noncoding microRNA-1291 (hsa-miR-1291) in regulation of ABCC1 and drug disposition. Bioinformatics analyses indicated that hsa-miR-1291, localized within the small nucleolar RNA H/ACA box 34 (SNORA34), might target ABCC1 3'-untranslated region (3'UTR). Using splinted ligation small RNA detection method, we found that SNORA34 was processed into hsa-miR-1291 in human pancreatic carcinoma PANC-1 cells. Luciferase reporter assays showed that ABCC1 3'-UTR-luciferase activity was decreased by 20% in cells transfected with hsa-miR-1291 expression plasmid, and increased by 40% in cells transfected with hsa-miR-1291 antagomir. Furthermore, immunoblot study revealed that ABCC1 protein expression was sharply reduced in hsa-miR-1291-stably transfected PANC-1 cells, which was attenuated by hsa-miR-1291 antagomir. The change of ABCC1 protein expression was associated with an alternation in mRNA expression. In addition, hsa-miR-1291-directed downregulation of ABCC1 led to a greater intracellular drug accumulation and sensitized the cells to doxorubicin. Together, our results indicate that hsa-miR-1291 is derived from SNORA34 and modulates cellular drug disposition and chemosensitivity through regulation of ABCC1 expression. These findings shall improve the understanding of microRNA-controlled epigenetic regulatory mechanisms underlying multidrug resistance and interindividual variability in pharmacokinetics.

Journal ArticleDOI
TL;DR: Overall these data show that each mouse Ces gene has its own distinctive tissue expression pattern and suggest that some CES may have tissue-specific roles in lipid metabolism and xenobiotic clearance.
Abstract: Carboxylesterases (CES) are a well recognized, yet incompletely characterized family of proteins that catalyze neutral lipid hydrolysis. Some CES have well-defined roles in xenobiotic clearance, pharmacologic prodrug activation, and narcotic detoxification. In addition, emerging evidence suggests other CES may have roles in lipid metabolism. Humans have six CES genes, whereas mice have 20 Ces genes grouped into five isoenzyme classes. Perhaps due to the high sequence similarity shared by the mouse Ces genes, the tissue-specific distribution of expression for these enzymes has not been fully addressed. Therefore, we performed studies to provide a comprehensive tissue distribution analysis of mouse Ces mRNAs. These data demonstrated that while the mouse Ces family 1 is highly expressed in liver and family 2 in intestine, many Ces genes have a wide and unique tissue distribution defined by relative mRNA levels. Furthermore, evaluating Ces gene expression in response to pharmacologic activation of lipid- and xenobiotic-sensing nuclear hormone receptors showed differential regulation. Finally, specific shifts in Ces gene expression were seen in peritoneal macrophages following lipopolysaccharide treatment and in a steatotic liver model induced by high-fat feeding, two model systems relevant to disease. Overall these data show that each mouse Ces gene has its own distinctive tissue expression pattern and suggest that some CES may have tissue-specific roles in lipid metabolism and xenobiotic clearance.

Journal ArticleDOI
TL;DR: The results suggest that cannabinol and cannabidiol could significantly alter ethanol glucuronidation, and UGT1A9 and 2B7 are the main enzymes involved in ethanol glucuridation.
Abstract: Ethyl glucuronide (EtG) determination is increasingly used in clinical and forensic toxicology to document ethanol consumption. The enzymes involved in EtG production, as well as potential interactions with common drugs of abuse, have not been extensively studied. Activities of human liver (HLM), kidney (HKM), and intestinal (HIM) microsomes, as well as of 12 major human recombinant UDP-glucuronosyltransferases (UGTs), toward ethanol (50 and 500 mM) were evaluated in vitro using liquid chromatography-tandem mass spectrometry. Enzyme kinetic parameters were determined for pooled microsomes and recombinant UGTs with significant activity. Individual contributions of UGTs were estimated using the relative activity factor approach, proposed for scaling activities obtained with cDNA-expressed enzymes to HLM. Interaction of morphine, codeine, lorazepam, oxazepam, nicotine, cotinine, cannabinol, and cannabidiol (5, 10, 15 mg/l) with ethanol (1.15, 4.6, 11.5 g/l; i.e., 25, 100, 250 mM) glucuronidation was assessed using pooled HLM. Ethanol glucuronidation intrinsic clearance (Cl(int)) was 4 and 12.7 times higher for HLM than for HKM and HIM, respectively. All recombinant UGTs, except UGT1A1, 1A6, and 1A10, produced EtG in detectable amounts. UGT1A9 and 2B7 were the most active enzymes, each accounting for 17 and 33% of HLM Cl(int), respectively. Only cannabinol and cannabidiol significantly affected ethanol glucuronidation. Cannabinol increased ethanol glucuronidation in a concentration-dependent manner, whereas cannabidiol significantly inhibited EtG formation in a noncompetitive manner (IC(50) = 1.17 mg/l; inhibition constant (K(i)) = 3.1 mg/l). UGT1A9 and 2B7 are the main enzymes involved in ethanol glucuronidation. In addition, our results suggest that cannabinol and cannabidiol could significantly alter ethanol glucuronidation.

Journal ArticleDOI
TL;DR: The present study evaluated the pharmacokinetics of the six major flavonolignans in healthy volunteers receiving single doses of either one (175 mg), two (350 mg), or three (525 mg) milk thistle capsule(s) on three separate study visits, and demonstrated that all six flavons were rapidly absorbed and eliminated.
Abstract: Milk thistle (Silybum marianum) extracts, one of the most widely used dietary supplements, contain a mixture of six major flavonolignans (silybin A, silybin B, isosilybin A, isosilybin B, silychristin, and silydianin) and other components. However, the pharmacokinetics of the free individual flavonolignans have been only partially investigated in humans. Furthermore, antioxidant effects of the extract, which may underlie the basis of many therapeutic effects, have not been thoroughly assessed. The present study evaluated the pharmacokinetics of the six major flavonolignans in healthy volunteers receiving single doses of either one (175 mg), two (350 mg), or three (525 mg) milk thistle capsule(s) on three separate study visits. Additionally, the steady-state pharmacokinetic parameters were determined after the subjects were administered one capsule three times daily for 28 consecutive days. Our results demonstrated that all six flavonolignans were rapidly absorbed and eliminated. In order of abundance, the exposure to free flavonolignans was greatest for silybin A followed by silybin B, isosilybin B, isosilybin A, silychristin, and silydianin. The systemic exposure to these compounds appeared linear and dose proportional. The disposition of flavonolignans was stereoselective, as evidenced by the apparent clearance of silybin B, which was significantly greater than silybin A, whereas the apparent clearance of isosilybin B was significantly lower than isosilybin A. The concentrations of urinary 8-epi-prostaglandin F2α, a commonly used biomarker of oxidative status in humans, were considerably decreased in study subjects after a 28-day exposure to the extract (1.3 ± 0.9 versus 0.8 ± 0.9 ng/mg creatinine) but failed to reach statistical significance (P = 0.076).

Journal ArticleDOI
TL;DR: The range of concentrations determined indicates that catalytic rates per mg total protein in vitro will not accurately reflect isoform inherent specific activity for a particular drug candidate.
Abstract: Quantification methods employing stable isotope-labeled peptide standards and liquid chromatography–tandem mass spectrometry are increasingly being used to measure enzyme amounts in biologic samples. Isoform concentrations, combined with catalytic information, can be used in absorption, distribution, metabolism, and excretion studies to improve accuracy of in vitro/in vivo predictions. We quantified isoforms of uridine-diphosphate glucuronosyltransferase (UGT) 1A and 2B in 12 commercially available recombinant UGTs (recUGTs) (n = 49 samples) using nano-ultra-high-performance liquid chromatography–tandem mass spectrometry with selected reaction monitoring). Samples were trypsin-digested and analyzed using our previously published method. Two MRMs were collected per peptide and averaged. Where available, at least two peptides were measured per UGT isoform. The assay could detect UGTs in all recombinant preparations: recUGTs 1A1, 1A3, 1A4, 1A6, 1A7, 1A8, 1A9, 1A10, 2B4, 2B7, 2B15, and 2B17, with limit of detection below 1.0 pmol/mg protein for all isoforms. The assay had excellent linearity in the range observed (2–15.5 pmol/mg, after dilution). Examples of concentrations determined were 1465, 537, 538, 944, 865, 698, 604, 791, 382, 1149, 307, and 740 pmol/mg protein for the respective isoforms. There was a 6.9-fold difference between the maximum and minimum recUGT concentrations. The range of concentrations determined indicates that catalytic rates per mg total protein in vitro will not accurately reflect isoform inherent specific activity for a particular drug candidate. This is the first report of a targeted precise quantification of commercially available recUGTs. The assay has potential for use in comparing UGT amounts with catalytic activity determined using probe substrates, thus allowing representation of catalysis as per pmol of UGT isoform.

Journal ArticleDOI
TL;DR: Global gene expression in Oat3 knockout tissue was analyzed, which implicated OAT3 in phase I and phase II metabolism (drug metabolizing enzymes or DMEs), as well as signaling pathways, and suggests that Oat 3 is essential for the handling of dietary flavonoids and antioxidants.
Abstract: Multispecific drug transporters of the solute carrier and ATP-binding cassette families are highly conserved through evolution, but their true physiologic role remains unclear. Analyses of the organic anion transporter 3 (OAT3; encoded by Slc22a8/Oat3, originally Roct) knockout mouse have confirmed its critical role in the renal handling of common drugs (e.g., antibiotics, antivirals, diuretics) and toxins. Previous targeted metabolomics of the knockout of the closely related Oat1 have demonstrated a central metabolic role, but the same approach with Oat3 failed to reveal a similar set of endogenous substrates. Nevertheless, the Oat3 knockout is the only Oat described so far with a physiologically significant phenotype, suggesting the disturbance of metabolic or signaling pathways. Here we analyzed global gene expression in Oat3 knockout tissue, which implicated OAT3 in phase I and phase II metabolism (drug metabolizing enzymes or DMEs), as well as signaling pathways. Metabolic reconstruction with the recently developed “mouse Recon1” supported the involvement of Oat3 in the aforementioned pathways. Untargeted metabolomics were used to determine whether the predicted metabolic alterations could be confirmed. Many significant changes were observed; several metabolites were tested for direct interaction with mOAT3, whereas others were supported by published data. Oat3 thus appears critical for the handling of phase I (hydroxylation) and phase II (glucuronidation) metabolites. Oat3 also plays a role in bioenergetic pathways (e.g., the tricarboxylic acid cycle), as well as those involving vitamins (e.g., folate), steroids, prostaglandins, gut microbiome products, uremic toxins, cyclic nucleotides, amino acids, glycans, and possibly hyaluronic acid. The data seemingly consistent with the Remote Sensing and Signaling Hypothesis (Ahn and Nigam, 2009; Wu et al., 2011), also suggests that Oat3 is essential for the handling of dietary flavonoids and antioxidants.