scispace - formally typeset
Search or ask a question

Showing papers in "European Biophysics Journal in 2012"


Journal ArticleDOI
TL;DR: The results of depth-sensing analysis of the mechanical properties of living fibroblasts measured under physiological conditions enable the non-homogeneity of the cell cytoskeleton, particularly, its contribution linked to actin filaments located beneath the cell membrane.
Abstract: Atomic force microscopy is a common technique used to determine the elastic properties of living cells. It furnishes the relative Young’s modulus, which is typically determined for indentation depths within the range 300–500 nm. Here, we present the results of depth-sensing analysis of the mechanical properties of living fibroblasts measured under physiological conditions. Distributions of the Young’s moduli were obtained for all studied cells and for every cell. The results show that for small indentation depths, histograms of the relative values of the Young’s modulus described the regions rich in the network of actin filaments. For large indentation depths, the overall stiffness of a whole cell was obtained, which was accompanied by a decrease of the modulus value. In conclusion, the results enable us to describe the non-homogeneity of the cell cytoskeleton, particularly, its contribution linked to actin filaments located beneath the cell membrane. Preliminary results showing a potential application to improve the detection of cancerous cells, have been presented for melanoma cell lines.

113 citations


Journal ArticleDOI
TL;DR: This review addresses theoretical and practical concepts, concerns, and considerations for using techniques in conjunction with computational methods to productively combine solution-scattering data with high-resolution structures to identify macromolecular flexibility from SAXS data.
Abstract: The dynamics of macromolecular conformations are critical to the action of cellular networks. Solution X-ray scattering studies, in combination with macromolecular X-ray crystallography (MX) and nuclear magnetic resonance (NMR), strive to determine complete and accurate states of macromolecules, providing novel insights describing allosteric mechanisms, supramolecular complexes, and dynamic molecular machines. This review addresses theoretical and practical concepts, concerns, and considerations for using these techniques in conjunction with computational methods to productively combine solution-scattering data with high-resolution structures. I discuss the principal means of direct identification of macromolecular flexibility from SAXS data followed by critical concerns about the methods used to calculate theoretical SAXS profiles from high-resolution structures. The SAXS profile is a direct interrogation of the thermodynamic ensemble and techniques such as, for example, minimal ensemble search (MES), enhance interpretation of SAXS experiments by describing the SAXS profiles as population-weighted thermodynamic ensembles. I discuss recent developments in computational techniques used for conformational sampling, and how these techniques provide a basis for assessing the level of the flexibility within a sample. Although these approaches sacrifice atomic detail, the knowledge gained from ensemble analysis is often appropriate for developing hypotheses and guiding biochemical experiments. Examples of the use of SAXS and combined approaches with X-ray crystallography, NMR, and computational methods to characterize dynamic assemblies are presented.

105 citations


Journal ArticleDOI
TL;DR: A correlation between the mechanism of gene release from complexes, the structure, and the physical and chemical parameters of the complexes has been established, which is a fundamental step towards rational design of highly efficient lipid gene vectors.
Abstract: Gene-based therapeutic approaches are based upon the concept that, if a disease is caused by a mutation in a gene, then adding back the wild-type gene should restore regular function and attenuate the disease phenotype. To deliver the gene of interest, both viral and nonviral vectors are used. Viruses are efficient, but their application is impeded by detrimental side-effects. Among nonviral vectors, cationic liposomes are the most promising candidates for gene delivery. They form stable complexes with polyanionic DNA (lipoplexes). Despite several advantages over viral vectors, the transfection efficiency (TE) of lipoplexes is too low compared with those of engineered viral vectors. This is due to lack of knowledge about the interactions between complexes and cellular components. Rational design of efficient lipoplexes therefore requires deeper comprehension of the interactions between the vector and the DNA as well as the cellular pathways and mechanisms involved. The importance of the lipoplex structure in biological function is revealed in the application of synchrotron small-angle X-ray scattering in combination with functional TE measurements. According to current understanding, the structure of lipoplexes can change upon interaction with cellular membranes and such changes affect the delivery efficiency. Recently, a correlation between the mechanism of gene release from complexes, the structure, and the physical and chemical parameters of the complexes has been established. Studies aimed at correlating structure and activity of lipoplexes are reviewed herein. This is a fundamental step towards rational design of highly efficient lipid gene vectors.

97 citations


Journal ArticleDOI
TL;DR: The results show that the G-domain mediates the Ras–membrane interaction by inducing different sets of preferred orientations in the active and inactive states with largely parallel orientation relative to the membrane of most of the helices.
Abstract: Ras proteins are proto-oncogenes that function as molecular switches linking extracellular stimuli with an overlapping but distinctive range of biological outcomes. Although modulatable interactions between the membrane and the Ras C-terminal hypervariable region (HVR) harbouring the membrane anchor motifs enable signalling specificity to be determined by their location, it is becoming clear that the spatial orientation of different Ras proteins is also crucial for their functions. To reveal the orientation of the G-domain at membranes, we conducted an extensive study on different Ras isoforms anchored to model raft membranes. The results show that the G-domain mediates the Ras-membrane interaction by inducing different sets of preferred orientations in the active and inactive states with largely parallel orientation relative to the membrane of most of the helices. The distinct locations of the different isoforms, exposing them to different effectors and regulators, coupled with different G-domain-membrane orientation, suggests synergy between this type of recognition motif and the specificity conferred by the HVR, thereby validating the concept of isoform specificity in Ras.

65 citations


Journal ArticleDOI
TL;DR: This review discusses the development of matter density-based models that allow for the joint refinement of different contrast neutron and X-ray data, as well as the implementation of local volume conservation within the unit cell (i.e., ideal packing).
Abstract: Some of our recent work has resulted in the detailed structures of fully hydrated, fluid phase phosphatidylcholine (PC) and phosphatidylglycerol (PG) bilayers. These structures were obtained from the joint refinement of small-angle neutron and X-ray data using the scattering density profile (SDP) models developed by Kucerka et al. (Biophys J 95:2356-2367, 2008; J Phys Chem B 116:232-239, 2012). In this review, we first discuss models for the standalone analysis of neutron or X-ray scattering data from bilayers, and assess the strengths and weaknesses inherent to these models. In particular, it is recognized that standalone data do not contain enough information to fully resolve the structure of naturally disordered fluid bilayers, and therefore may not provide a robust determination of bilayer structure parameters, including the much-sought-after area per lipid. We then discuss the development of matter density-based models (including the SDP model) that allow for the joint refinement of different contrast neutron and X-ray data, as well as the implementation of local volume conservation within the unit cell (i.e., ideal packing). Such models provide natural definitions of bilayer thicknesses (most importantly the hydrophobic and Luzzati thicknesses) in terms of Gibbs dividing surfaces, and thus allow for the robust determination of lipid areas through equivalent slab relationships between bilayer thickness and lipid volume. In the final section of this review, we discuss some of the significant findings/features pertaining to structures of PC and PG bilayers as determined from SDP model analyses.

61 citations


Journal ArticleDOI
TL;DR: A striking correlation between the extent of conformational change and the respective fusion activities was found for the series of peptides investigated here, and CD data show that lipid mixing can be triggered by any type of conformation acquired upon binding, whether α-helical, β-stranded, or other.
Abstract: According to their distinct biological functions, membrane-active peptides are generally classified as antimicrobial (AMP), cell-penetrating (CPP), or fusion peptides (FP). The former two classes are known to have some structural and physicochemical similarities, but fusogenic peptides tend to have rather different features and sequences. Nevertheless, we found that many CPPs and some AMPs exhibit a pronounced fusogenic activity, as measured by a lipid mixing assay with vesicles composed of typical eukaryotic lipids. Compared to the HIV fusion peptide (FP23) as a representative standard, all designer-made peptides showed much higher lipid-mixing activities (MSI-103, MAP, transportan, penetratin, Pep1). Native sequences, on the other hand, were less fusogenic (magainin 2, PGLa, gramicidin S), and pre-aggregated ones were inactive (alamethicin, SAP). The peptide structures were characterized by circular dichroism before and after interacting with the lipid vesicles. A striking correlation between the extent of conformational change and the respective fusion activities was found for the series of peptides investigated here. At the same time, the CD data show that lipid mixing can be triggered by any type of conformation acquired upon binding, whether α-helical, β-stranded, or other. These observations suggest that lipid vesicle fusion can simply be driven by the energy released upon membrane binding, peptide folding, and possibly further aggregation. This comparative study of AMPs, CPPs, and FPs emphasizes the multifunctional aspects of membrane-active peptides, and it suggests that the origin of a peptide (native sequence or designer-made) may be more relevant to define its functional range than any given name.

61 citations


Journal ArticleDOI
TL;DR: The nanoscale dynamics in the high-cholesterol liquid-ordered phase of bilayers containing cholesterol appears to be “softer” than fluid bilayers, but better ordered than bilayers in the gel phase.
Abstract: Inelastic neutron scattering was used to study the effect of 5 and 40 mol% cholesterol on the lateral nanoscale dynamics of phospholipid membranes. By measuring the excitation spectrum at several lateral q || values (up to q || = 3 A−1), complete dispersion curves were determined of gel, fluid and liquid-ordered phase bilayers. The inclusion of cholesterol had a distinct effect on the collective dynamics of the bilayer’s hydrocarbon chains; specifically, we observed a pronounced stiffening of the membranes on the nanometer length scale in both gel and fluid bilayers, even though they were experiencing a higher degree of molecular disorder. Also, for the first time we determined the nanoscale dynamics in the high-cholesterol liquid-ordered phase of bilayers containing cholesterol. Namely, this phase appears to be “softer” than fluid bilayers, but better ordered than bilayers in the gel phase.

57 citations


Journal ArticleDOI
TL;DR: Recent developments and applications of acoustic levitation in materials R&D are reviewed including implementation and results of experiments on supercooled and supersaturated liquids using an acoustic levitator at a high-energy X-ray beamline.
Abstract: Containerless sample environments (levitation) are useful for study of nucleation, supercooling, and vitrification and for synthesis of new materials, often with non-equilibrium structures. Elimination of extrinsic nucleation by container walls extends access to supercooled and supersaturated liquids under high-purity conditions. Acoustic levitation is well suited to the study of liquids including aqueous solutions, organics, soft materials, polymers, and pharmaceuticals at around room temperature. This article briefly reviews recent developments and applications of acoustic levitation in materials R&D. Examples of experiments yielding amorphous pharmaceutical materials are presented. The implementation and results of experiments on supercooled and supersaturated liquids using an acoustic levitator at a high-energy X-ray beamline are described.

54 citations


Journal ArticleDOI
TL;DR: The model has been widely used for surface scattering studies using both neutrons and synchrotron radiation and its use in studies of relevance for physics and biology research areas will be described.
Abstract: Progress in the determination of structure and fluctuation spectrum of a floating bilayer system, as well as potential applications for biological studies, is reviewed. The system described here was first introduced by Charitat et al. (Eur Phys J B 8:583–593, 1999) and consists of a planar bilayer floating at 2–3 nm away from an adsorbed one on a solid surface in contact with bulk water. This model has been widely used for surface scattering studies using both neutrons and synchrotron radiation and its use in studies of relevance for physics and biology research areas will be described, together with the progress towards the production of complex biomimetic samples for use with scattering techniques.

51 citations


Journal ArticleDOI
TL;DR: The mixed-grained simulations do not show large differences compared to the FG atomic level simulations, apart from an increased tendency to form hydrogen bonds between long side chains, which is due to the reduced ability of the supra-molecular CG beads that represent five FG water molecules to make solvent-protein hydrogen bonds.
Abstract: Simulation of the dynamics of a protein in aqueous solution using an atomic model for both the protein and the many water molecules is still computationally extremely demanding considering the time scale of protein motions. The use of supra-atomic or supra-molecular coarse-grained (CG) models may enhance the computational efficiency, but inevitably at the cost of reduced accuracy. Coarse-graining solvent degrees of freedom is likely to yield a favourable balance between reduced accuracy and enhanced computational speed. Here, the use of a supra-molecular coarse-grained water model that largely preserves the thermodynamic and dielectric properties of atomic level fine-grained (FG) water in molecular dynamics simulations of an atomic model for four proteins is investigated. The results of using an FG, a CG, an implicit, or a vacuum solvent environment of the four proteins are compared, and for hen egg-white lysozyme a comparison to NMR data is made. The mixed-grained simulations do not show large differences compared to the FG atomic level simulations, apart from an increased tendency to form hydrogen bonds between long side chains, which is due to the reduced ability of the supra-molecular CG beads that represent five FG water molecules to make solvent-protein hydrogen bonds. But, the mixed-grained simulations are at least an order of magnitude faster than the atomic level ones.

46 citations


Journal ArticleDOI
TL;DR: This review covers recent studies on the characterization of the dynamics of lipidic nanostructures formed via self-assembly processes and the need for investigating self-assembled systems, mainly stimuli-responsive drug nanocarriers, under nonequilibrium conditions is discussed.
Abstract: This review covers recent studies on the characterization of the dynamics of lipidic nanostructures formed via self-assembly processes. The focus is placed on two main topics: First, an overview of advanced experimental small-angle X-ray scattering (SAXS) setups combined with various sample manipulation techniques including, for instance, stop-flow mixing or rapid temperature-jump perturbation is given. Second, our recent synchrotron SAXS findings on the dynamic structural response of gold nanoparticle-loaded vesicles upon exposure to an ultraviolet light source, the impact of rapidly mixing negatively charged vesicles with calcium ions, and in situ hydration-induced formation of inverted-type liquid-crystalline phases loaded with the local anesthetic bupivacaine are summarized. These in situ time-resolved experiments allow real-time monitoring of the dynamics of the structural changes and the possible formation of intermediate states in the millisecond to second range. The need for investigating self-assembled systems, mainly stimuli-responsive drug nanocarriers, under nonequilibrium conditions is discussed. For pharmaceutically relevant applications, it is essential to combine these investigations with appropriate in vitro and in vivo studies.

Journal ArticleDOI
TL;DR: It is demonstrated that nano or microbubbles can achieve oxygen supersaturation of fluids, and may be sufficiently small and safe for infusion into blood vessels, and NSS is suitable for production of oxygen-rich fluid.
Abstract: Microbubbles have been used in a variety of fields and have unique properties, for example shrinking collapse, long lifetime, efficient gas solubility, a negatively charged surface, and the ability to produce free radicals. In medicine, microbubbles have been used mainly as diagnostic aids to scan various organs of the body, and they have recently been investigated for use in drug and gene delivery. However, there have been no reports of blood oxygenation by use of oxygen microbubble fluids without shell reagents. In this study, we demonstrated that nano or microbubbles can achieve oxygen supersaturation of fluids, and may be sufficiently small and safe for infusion into blood vessels. Although Po2 increases in fluids resulting from use of microbubbles were inhibited by polar solvents, normal saline solution (NSS) was little affected. Thus, NSS is suitable for production of oxygen-rich fluid. In addition, oxygen microbubble NSS effectively improved hypoxic conditions in blood. Thus, use of oxygen microbubble (nanobubble) fluids is a potentially effective novel method for oxygenation of hypoxic tissues, for infection control, and for anticancer treatment.

Journal ArticleDOI
TL;DR: Investigations ofangmuir monolayers of amphotericin B were investigated by recording π–A isotherms under different pH conditions and revealed that the ionic state of AmB and the presence of sterols led to changes in membrane fluidity and molecular packing of the AmB molecules in the lipid membranes.
Abstract: Langmuir monolayers of amphotericin B (AmB) were investigated by recording π–A isotherms under different pH conditions. To gain a better insight into antibiotic–membrane interactions they were monitored by use of the ATR-FTIR spectroscopy. It was observed for AmB monolayers that the limiting molecular area was larger at high than at neutral pH. Analysis of FTIR spectra at different pH revealed substantial differences, depending on ionic state, for different orientations of AmB molecules. These results enable better understanding of the participation of functional groups in the interactions between AmB and sterol-containing DPPC membranes. AmB molecules incorporated into two-component lipid monolayers bind strongly to the ergosterol-rich membrane (maximum penetration surface pressures ca 35 mN/m). The FTIR spectra revealed that the ionic state of AmB and the presence of sterols led to changes in membrane fluidity and molecular packing of the AmB molecules in the lipid membranes. These investigations should be further investigated to discover the molecular mechanism responsible for the mode of action AmB in biological systems.

Journal ArticleDOI
TL;DR: It is shown that helix-like pili have the ability to act as efficient dampers of force that can, for a limited time, lower the load on the force-mediating adhesin-receptor bond on the tip of an individual pilus.
Abstract: Biopolymers are vital structures for many living organisms; for a variety of bacteria, adhesion polymers play a crucial role for the initiation of colonization. Some bacteria express, on their surface, attachment organelles (pili) that comprise subunits formed into stiff helix-like structures that possess unique biomechanical properties. These helix-like structures possess a high degree of flexibility that gives the biopolymers a unique extendibility. This has been considered beneficial for piliated bacteria adhering to host surfaces in the presence of a fluid flow. We show in this work that helix-like pili have the ability to act as efficient dampers of force that can, for a limited time, lower the load on the force-mediating adhesin-receptor bond on the tip of an individual pilus. The model presented is applied to bacteria adhering with a single pilus of either of the two most common types expressed by uropathogenic Escherichia coli, P or type 1 pili, subjected to realistic flows. The results indicate that for moderate flows (~25 mm/s) the force experienced by the adhesin-receptor interaction at the tip of the pilus can be reduced by a factor of ~6 and ~4, respectively. The uncoiling ability provides a bacterium with a "go with the flow" possibility that acts as a damping. It is surmised that this can be an important factor for the initial part of the adhesion process, in particular in turbulent flows, and thereby be of use for bacteria in their striving to survive a natural defense such as fluid rinsing actions.

Journal ArticleDOI
TL;DR: It was shown that cholesterol strongly prefers anionic lipids to neutral and saturated lipid tails to unsaturated with a distribution ratio of ~0.7 in neutral/anionic bilayers and of~0.4 in unsaturated/saturated bilayers.
Abstract: The distribution of cholesterol in asymmetric lipid bilayers was studied by extensive coarse-grained molecular dynamics simulations. The effects of the lipid head group charge, acyl chain saturation, spontaneous membrane curvature and surface tension of the membrane were investigated. Four asymmetric bilayers containing DOPC, DOPS, DSPC or DSPS lipids were simulated on a time scale extended to tens of microseconds. We show that cholesterol strongly prefers anionic lipids to neutral and saturated lipid tails to unsaturated with a distribution ratio of ~0.7 in neutral/anionic bilayers and of ~0.4 in unsaturated/saturated bilayers. Multiple flip-flop transitions of cholesterol were observed directly, and their mean times ranged from 80 to 250 ns. It was shown that the distribution of cholesterol in the asymmetric membrane depends not only on the type of lipid, but also on the local membrane curvature and the surface tension. The membrane curvature enhances the influence of the lipid head groups on cholesterol distribution, while non-optimal surface tension caused by different areas per lipid in different monolayers increases the effect of the lipid tail saturation. It was clearly seen that the monolayers of asymmetric bilayers are interdependent. Mean distances from the bilayer center to cholesterol molecules depend not only on the type of the lipid in the considered monolayer but also on the composition of the opposite monolayer.

Journal ArticleDOI
TL;DR: EPR spin-labeling methods were used to investigate the order and fluidity of alkyl chains, the hydrophobicity of the membrane interior, and the order of cholesterol molecules in coexisting phases and domains, or in a single phase of fluid-phase cholesterol/egg-sphingomyelin (Chol/ESM) membranes.
Abstract: EPR spin-labeling methods were used to investigate the order and fluidity of alkyl chains, the hydrophobicity of the membrane interior, and the order and motion of cholesterol molecules in coexisting phases and domains, or in a single phase of fluid-phase cholesterol/egg-sphingomyelin (Chol/ESM) membranes with a Chol/ESM mixing ratio from 0 to 3. A complete set of profiles for these properties was obtained for the liquid-disordered (l d) phase without cholesterol, for the liquid-ordered (l o) phase for the entire region of cholesterol solubility in this phase (from 33 to 66 mol%), and for the l o-phase domain that coexists with the cholesterol bilayer domain (CBD). Alkyl chains in the l o phase are more ordered than in the l d pure ESM membrane. However, fluidity in the membrane center is greater. Also, the profile of hydrophobicity changed from a bell to a rectangular shape. These differences are enhanced when the cholesterol content of the l o phase is increased from 33 to 66 mol%, with clear brake-points between the C9 and C10 positions (approximately where the steroid-ring structure of cholesterol reaches into the membrane). The organization and motion of cholesterol molecules in the CBD are similar to those in the l o-phase domain that coexists with the CBD.

Journal ArticleDOI
TL;DR: Transients collected over a large range of calcium concentrations could be well described by adjusting a single calcium-dependent parameter, the rate constant of TnI detachment from actin, k−I, and spatially explicit calculations confirmed variable sizes for the cooperative units and clustering of bound myosins at low calcium concentrations.
Abstract: The regulation of striated muscle contraction involves cooperative interactions between actin filaments, myosin-S1 (S1), tropomyosin (Tm), troponin (Tn), and calcium. These interactions are modeled by treating overlapping tropomyosins as a continuous flexible chain (CFC), weakly confined by electrostatic interactions with actin. The CFC is displaced locally in opposite directions on the actin surface by the binding of either S1 or Troponin I (TnI) to actin. The apparent rate constants for myosin and TnI binding to and detachment from actin are then intrinsically coupled via the CFC model to the presence of neighboring bound S1s and TnIs. Monte Carlo simulations at prescribed values of the CFC stiffness, the CFC's degree of azimuthal confinement, and the angular displacements caused by the bound proteins were able to predict the stopped-flow transients of S1 binding to regulated F-actin. The transients collected over a large range of calcium concentrations could be well described by adjusting a single calcium-dependent parameter, the rate constant of TnI detachment from actin, k(-I). The resulting equilibrium constant K(B) ≡ 1/K(I) varied sigmoidally with the free calcium, increasing from 0.12 at low calcium (pCa >7) to 12 at high calcium (pCa <5.5) with a Hill coefficient of ~2.15. The similarity of the curves for excess-actin and excess-myosin data confirms their allosteric relationship. The spatially explicit calculations confirmed variable sizes for the cooperative units and clustering of bound myosins at low calcium concentrations. Moreover, inclusion of negative cooperativity between myosin units predicted the observed slowing of myosin binding at excess-myosin concentrations.

Journal ArticleDOI
TL;DR: It is found that TNF-α induces a wide distribution of cell area and aspect ratio, with these properties increasing on average during treatment, and an inverse correlation between cell aspect ratio and migration speed after T NF-α treatment is revealed, suggesting that cell shape may be an important functional regulator of EC migration during an inflammatory response.
Abstract: The immune response triggers a complicated sequence of events, one of which is release of the cytokine tumor necrosis factor-α (TNF-α) from stromal cells, for example monocytes and macrophages. In this work we investigated the biophysical effects of TNF-α on endothelial cells (ECs), including changes in cell morphology, biomechanics, migration, and cytoskeletal dynamics. We found that TNF-α induces a wide distribution of cell area and aspect ratio, with these properties increasing on average during treatment. Interestingly, aspect ratio peaks after approximately 10 h of exposure to TNF-α, corresponding also to a peak in exerted traction forces. Meanwhile, ECs treated with TNF-α soften, and we associate this with significant increases in estimated cellular volume. In addition, our evaluation of migratory dynamics revealed an inverse correlation between cell aspect ratio and migration speed after TNF-α treatment, suggesting that cell shape may be an important functional regulator of EC migration during an inflammatory response. Finally, we addressed the basic mechanics of how the reorganization of F-actin filaments occurs during TNF-α treatment, and observed a dynamic shift of existing actin filaments. Together, our results suggest a functional link between EC morphology, biomechanics, migration, and cytoskeletal dynamics during an inflammatory response.

Journal ArticleDOI
TL;DR: It is shown that QIIB formation proceeds much more easily upon cooling from the HII phase than upon heating or isothermal conversion from the Lα phase, thus identifying an indirect but faster route for QIIb phase induction in lipids.
Abstract: On the basis of data obtained by time-resolved X-ray diffraction, we consider in the present article the occurrence and formation pathways of inverted bicontinuous cubic phases, or bilayer cubic phases, Q II B , in diluted dispersions of lipids representing major biomembrane lipid classes [phosphatidylethanolamines (PEs), mixtures of PEs and phosphatidylcholines (PCs) with other lipids, glycolipids]. We show that Q II B formation proceeds much more easily upon cooling from the HII phase than upon heating or isothermal conversion from the Lα phase, thus identifying an indirect but faster route for Q II B phase induction in lipids. The data collected consistently show that the ability to convert into cubic phase upon temperature cycling appears to be a general property of all lipids exhibiting an Lα ↔ HII phase transition. Admixtures of charged phospholipids, both anionic and cationic, strongly facilitate Q II B formation in PEs. Their effect may be attributed to increased electrostatic repulsion between the lipid bilayers that reduces the unbinding energy and facilitates the dissipation of the Lα phase required for its conversion into bilayer cubic phase.

Journal ArticleDOI
TL;DR: The findings reveal that the lower structural sensitivity of trehalose to thermal changes is connected with the local spatial scale, and the system relaxation time of the protein in a hydrated environment in the presence of disaccharides increases sensitively, explaining the higher bioprotectant effectiveness of tre Halose.
Abstract: In this contribution the effects of the homologous disaccharides trehalose and sucrose on both water and hydrated lysozyme dynamics are considered by determining the mean square displacement (MSD) from elastic incoherent neutron scattering (EINS) experiments. The self-distribution function (SDF) procedure is applied to the data collected, by use of IN13 and IN10 spectrometers (Institute Laue Langevin, France), on trehalose and sucrose aqueous mixtures (at a concentration corresponding to 19 water molecules per disaccharide molecule), and on dry and hydrated (H2O and D2O) lysozyme also in the presence of the disaccharides. As a result, above the glass transition temperature of water, the MSD of the water–trehalose system is lower than that of the water–sucrose system. This result suggests that the hydrogen-bond network of the water–trehalose system is stronger than that of the water–sucrose system. Furthermore, by taking into account instrumental resolution effects it was found that the system relaxation time of the water–trehalose system is longer than that of the water–sucrose system, and the system relaxation time of the protein in a hydrated environment in the presence of disaccharides increases sensitively. These results explain the higher bioprotectant effectiveness of trehalose. Finally, the partial MSDs of sucrose/water and trehalose/water have been evaluated. It clearly emerges from the analysis that these are almost equivalent in the low-Q domain (0–1.7 A−1) but differ substantially in the high-Q range (1.7–4 A−1). These findings reveal that the lower structural sensitivity of trehalose to thermal changes is connected with the local spatial scale.

Journal ArticleDOI
TL;DR: The CASTp program was used to define and measure the volume of the catalytic active sites of 573 enzymes in the Catalytic Site Atlas database, which is an unusual electrostatic and steric environment in which side chains and reactants are crowded together in a mixture more like an ionic liquid than an ideal infinitely dilute solution.
Abstract: Catalytic active sites of enzymes of known structure can be well defined by a modern program of computational geometry. The CASTp program was used to define and measure the volume of the catalytic active sites of 573 enzymes in the Catalytic Site Atlas database. The active sites are identified as catalytic because the amino acids they contain are known to participate in the chemical reaction catalyzed by the enzyme. Acid and base side chains are reliable markers of catalytic active sites. The catalytic active sites have 4 acid and 5 base side chains, in an average volume of 1,072 A3. The number density of acid side chains is 8.3 M (in chemical units); the number density of basic side chains is 10.6 M. The catalytic active site of these enzymes is an unusual electrostatic and steric environment in which side chains and reactants are crowded together in a mixture more like an ionic liquid than an ideal infinitely dilute solution. The electrostatics and crowding of reactants and side chains seems likely to be important for catalytic function. In three types of analogous ion channels, simulation of crowded charges accounts for the main properties of selectivity measured in a wide range of solutions and concentrations. It seems wise to use mathematics designed to study interacting complex fluids when making models of the catalytic active sites of enzymes.

Journal ArticleDOI
TL;DR: The results show that pH and temperature perturbations affect Th Cel7A stability by two different mechanisms, and variations in pH modify protonation of the enzyme residues, directly affecting its activity, while leading to structural destabilization only at extreme pH limits.
Abstract: Due to its elevated cellulolytic activity, the filamentous fungus Trichoderma harzianum (T. harzianum) has considerable potential in biomass hydrolysis application. Cellulases from Trichoderma reesei have been widely used in studies of cellulose breakdown. However, cellulases from T. harzianum are less-studied enzymes that have not been characterized biophysically and biochemically as yet. Here, we examined the effects of pH and temperature on the secondary and tertiary structures, compactness, and enzymatic activity of cellobiohydrolase Cel7A from T. harzianum (Th Cel7A) using a number of biophysical and biochemical techniques. Our results show that pH and temperature perturbations affect Th Cel7A stability by two different mechanisms. Variations in pH modify protonation of the enzyme residues, directly affecting its activity, while leading to structural destabilization only at extreme pH limits. Temperature, on the other hand, has direct influence on mobility, fold, and compactness of the enzyme, causing unfolding of Th Cel7A just above the optimum temperature limit. Finally, we demonstrated that incubation with cellobiose, the product of the reaction and a competitive inhibitor, significantly increased the thermal stability of Th Cel7A. Our studies might provide insights into understanding, at a molecular level, the interplay between structure and activity of Th Cel7A at different pH and temperature conditions.

Journal ArticleDOI
TL;DR: The recoiling process, and thus the biomechanical compliance, in particular the recoiled process, can be impaired by the presence of PapD, which leads to a new concept in the search for novel drug candidates combating uropathogenic bacterial infections—“coilicides”, targeting the subunits of which the pilus rod is composed.
Abstract: Gram-negative bacteria often initiate their colonization by use of extended attachment organelles, so called pili. When exposed to force, the rod of helix-like pili has been found to be highly extendable, mainly attributed to uncoiling and recoiling of its quaternary structure. This provides the bacteria with the ability to redistribute an external force among a multitude of pili, which enables them to withstand strong rinsing flows, which, in turn, facilitates adherence and colonization processes critical to virulence. Thus, pili fibers are possible targets for novel antibacterial agents. By use of a substance that compromises compliance of the pili, the ability of bacteria to redistribute external forces can be impaired, so they will no longer be able to resist strong urine flow and thus be removed from the host. It is possible such a substance can serve as an alternative to existing antibiotics in the future or be a part of a multi-drug. In this work we investigated whether it is possible to achieve this by targeting the recoiling process. The test substance was purified PapD. The effect of PapD on the compliance of P pili was assessed at the single organelle level by use of force-measuring optical tweezers. We showed that the recoiling process, and thus the biomechanical compliance, in particular the recoiling process, can be impaired by the presence of PapD. This leads to a new concept in the search for novel drug candidates combating uropathogenic bacterial infections—“coilicides”, targeting the subunits of which the pilus rod is composed.

Journal ArticleDOI
TL;DR: Two simple random-walk models of the gating dynamics of voltage and Ca2+-activated potassium channels are proposed which qualitatively reproduce the dwell-time distributions, and describe the experimentally observed long-term memory quite well.
Abstract: Several approaches to ion-channel gating modelling have been proposed. Although many models describe the dwell-time distributions correctly, they are incapable of predicting and explaining the long-term correlations between the lengths of adjacent openings and closings of a channel. In this paper we propose two simple random-walk models of the gating dynamics of voltage and Ca2+-activated potassium channels which qualitatively reproduce the dwell-time distributions, and describe the experimentally observed long-term memory quite well. Biological interpretation of both models is presented. In particular, the origin of the correlations is associated with fluctuations of channel mass density. The long-term memory effect, as measured by Hurst R/S analysis of experimental single-channel patch-clamp recordings, is close to the behaviour predicted by our models. The flexibility of the models enables their use as templates for other types of ion channel.

Journal ArticleDOI
TL;DR: The data suggest that fullerenol remains at the water/bilayer interface of eukaryote-like membranes and indicate that the presence of a polar group such as DPPG’s hydroxyl moiety at the bilayer surface plays a key role in the interaction of fullerene with membranes.
Abstract: Native fullerene is notoriously insoluble in water and forms aggregates toxic to cell membranes, thus limiting its use in nanomedicine. In contrast, water-soluble fullerenol is compatible with biological systems and shows low in vivo toxicity on human cell lines. The interaction mechanism between these hydrophilic nanoparticles and biological membranes is however not well understood. Therefore, in this work, the effect of fullerenol on model eukaryotic and bacterial membranes was investigated using 31P- and 2H solid-state NMR as well as FTIR spectroscopy. DPPC/cholesterol and DPPC/DPPG bilayers were used to mimic eukaryotic and bacterial cell membranes, respectively. Our results show low affinity of fullerenol for DPPC/cholesterol bilayers but a clear interaction with model bacterial membranes. A preferential affinity of fullerenol for the anionic phospholipids DPPG in DPPC/DPPG membranes is also observed. Our data suggest that fullerenol remains at the water/bilayer interface of eukaryote-like membranes. They also indicate that the presence of a polar group such as DPPG’s hydroxyl moiety at the bilayer surface plays a key role in the interaction of fullerenol with membranes. Hydrogen bonding of fullerenol nanoparticles with DPPGs’ OH groups is most likely responsible for inducing lipid segregation in the lipid bilayer. Moreover, the location of the nanoparticles in the polar region of DPPG-rich regions appears to disturb the acyl chain packing and increase the membrane fluidity. The preferential interaction of fullerenol with lipids mostly found in bacterial membranes is of great interest for the design of new antibiotics.

Journal ArticleDOI
TL;DR: Human serum albumin is the most abundant protein in the blood serum and has an especially strong affinity for heme, hence becoming a natural candidate for oxygen transport and molecular dynamics simulations of HSA with bound heme were performed.
Abstract: Human serum albumin (HSA) is the most abundant protein in the blood serum. It binds several ligands and has an especially strong affinity for heme, hence becoming a natural candidate for oxygen transport. In order to analyze the interaction of HSA-heme, molecular dynamics simulations of HSA with bound heme were performed. Based on the results of X-ray diffraction, the binding site of the heme, localized in subdomain IB, was considered. We analyzed the fluctuations and their correlations along trajectories to detect collective motions. The role of H bonds and salt bridges in the stabilization of heme in its pocket was also investigated. Complementarily, the localization of water molecules in the hydrophobic pocket and the interaction with heme were discussed.

Journal ArticleDOI
TL;DR: It is proposed that, in the cell, VASP crosslinking confers only moderate increases in linear network elasticity, and unlike other crosslinkers, V ASP’s network stiffening activity may be tuned by the local concentration of monomeric actin.
Abstract: Vasodilator-stimulated phosphoprotein (Ena/VASP) is an actin binding protein, important for actin dynamics in motile cells and developing organisms. Though VASP’s main activity is the promotion of barbed end growth, it has an F-actin binding site and can form tetramers, and so could additionally play a role in actin crosslinking and bundling in the cell. To test this activity, we performed rheology of reconstituted actin networks in the presence of wild-type VASP or mutants lacking the ability to tetramerize or to bind G-actin and/or F-actin. We show that increasing amounts of wild-type VASP increase network stiffness up to a certain point, beyond which stiffness actually decreases with increasing VASP concentration. The maximum stiffness is 10-fold higher than for pure actin networks. Confocal microscopy shows that VASP forms clustered actin filament bundles, explaining the reduction in network elasticity at high VASP concentration. Removal of the tetramerization site results in significantly reduced bundling and bundle clustering, indicating that VASP’s flexible tetrameric structure causes clustering. Removing either the F-actin or the G-actin binding site diminishes VASP’s effect on elasticity, but does not eliminate it. Mutating the F-actin and G-actin binding site together, or mutating the F-actin binding site and saturating the G-actin binding site with monomeric actin, eliminates VASP’s ability to increase network stiffness. We propose that, in the cell, VASP crosslinking confers only moderate increases in linear network elasticity, and unlike other crosslinkers, VASP’s network stiffening activity may be tuned by the local concentration of monomeric actin.

Journal ArticleDOI
TL;DR: The transport of co-encapsulated solutes through the melittin-induced pores in the membrane of giant phospholipid vesicles was studied, and the characteristics of the pore formation process were modeled.
Abstract: The transport of co-encapsulated solutes through the melittin-induced pores in the membrane of giant phospholipid vesicles was studied, and the characteristics of the pore formation process were modeled. Molecules of two different sizes (dextran and the smaller, fluorescent marker Alexa Fluor) were encapsulated inside the vesicles. The chosen individual vesicles were then transferred by micromanipulation from the stock suspension to the environment with the melittin (MLT). The vesicles were observed optically with a phase-contrast microscope and by monitoring the fluorescence signal. Such an experimental setup enabled an analysis of a single vesicle’s response to the MLT on the basis of simultaneous, separate measurements of the outflow of both types of encapsulated molecules through the MLT-induced pores in the membrane. The mechanisms of the MLT’s action were suggested in a model for MLT pore formation, with oligomeric pores continuously assembling and dissociating in the membrane. Based on the model, the results of the experiments were explained as a consequence of the membrane’s permeability dynamics, with a continuously changing distribution of pores in the membrane with regard to their size and number. The relatively stable “average MLT pore” characteristics can be deduced from the proposed model.

Journal ArticleDOI
TL;DR: Two common NMR approaches are compared: 2H-NMR quadrupolar waves, and separated local field 15N–1H polarization inversion spin exchange at magic angle (PISEMA) spectra, in order to identify their strengths and drawbacks for correctly determining the orientation and mobility of α-helical transmembrane peptides.
Abstract: Many solid-state nuclear magnetic resonance (NMR) approaches for membrane proteins rely on orientation-dependent parameters, from which the alignment of peptide segments in the lipid bilayer can be calculated. Molecules embedded in liquid-crystalline membranes, such as monomeric helices, are highly mobile, leading to partial averaging of the measured NMR parameters. These dynamic effects need to be taken into account to avoid misinterpretation of NMR data. Here, we compare two common NMR approaches: 2H-NMR quadrupolar waves, and separated local field 15N–1H polarization inversion spin exchange at magic angle (PISEMA) spectra, in order to identify their strengths and drawbacks for correctly determining the orientation and mobility of α-helical transmembrane peptides. We first analyzed the model peptide WLP23 in oriented dimyristoylphosphatidylcholine (DMPC) membranes and then contrasted it with published data on GWALP23 in dilauroylphosphatidylcholine (DLPC). We only obtained consistent tilt angles from the two methods when taking dynamics into account. Interestingly, the two related peptides differ fundamentally in their mobility. Although both helices adopt the same tilt in their respective bilayers (~20°), WLP23 undergoes extensive fluctuations in its azimuthal rotation angle, whereas GWALP23 is much less dynamic. Both alternative NMR methods are suitable for characterizing orientation and dynamics, yet they can be optimally used to address different aspects. PISEMA spectra immediately reveal the presence of large-amplitude rotational fluctuations, which are not directly seen by 2H-NMR. On the other hand, PISEMA was unable to define the azimuthal rotation angle in the case of the highly dynamic WLP23, though the helix tilt could still be determined, irrespective of any dynamics parameters.

Journal ArticleDOI
TL;DR: Because the Cu(II) and Zn( II) concentrations that inhibit fibrillization are comparable with those found in seminal fluid the metals may modulate SEVI fibrilization under physiological conditions.
Abstract: Semen-derived enhancer of virus infection (SEVI), a naturally occurring peptide fragment of prostatic acid phosphatase, enhances HIV infectivity by forming cationic amyloid fibrils that aid the fusion of negatively charged virion and target cell membranes. Cu(II) and Zn(II) inhibit fibrillization of SEVI in a kinetic assay using the fibril-specific dye ThT. TEM suggests that the metals do not affect fibril morphology. NMR shows that the metals bind to histidines 3 and 23 in the SEVI sequence. ITC experiments indicate that SEVI forms oligomeric complexes with the metals. Dissociation constants are micromolar for Cu(II) and millimolar for Zn(II). Because the Cu(II) and Zn(II) concentrations that inhibit fibrillization are comparable with those found in seminal fluid the metals may modulate SEVI fibrillization under physiological conditions.