scispace - formally typeset
Search or ask a question

Showing papers in "Genetics Selection Evolution in 2014"


Journal ArticleDOI
TL;DR: Inbreeding depression can be reduced by minimizing overall inbreeding but maybe also by avoiding the production of offspring that are homozygous for deleterious alleles at specific genomic regions that are associated with inbreeding depression.
Abstract: Background Inbreeding reduces the fitness of individuals by increasing the frequency of homozygous deleterious recessive alleles. Some insight into the genetic architecture of fitness, and other complex traits, can be gained by using single nucleotide polymorphism (SNP) data to identify regions of the genome which lead to reduction in performance when identical by descent (IBD). Here, we compared the effect of genome-wide and location-specific homozygosity on fertility and milk production traits in dairy cattle.

180 citations


Journal ArticleDOI
TL;DR: A strategy is presented for Bayesian regression models (SSBR) that combines all available data from genotyped and non-genotyped animals, as in SS-BLUP, but accommodates a wider class of models, and has the advantage that matrix inversion is not required.
Abstract: To obtain predictions that are not biased by selection, the conditional mean of the breeding values must be computed given the data that were used for selection. When single nucleotide polymorphism (SNP) effects have a normal distribution, it can be argued that single-step best linear unbiased prediction (SS-BLUP) yields a conditional mean of the breeding values. Obtaining SS-BLUP, however, requires computing the inverse of the dense matrix G of genomic relationships, which will become infeasible as the number of genotyped animals increases. Also, computing G requires the frequencies of SNP alleles in the founders, which are not available in most situations. Furthermore, SS-BLUP is expected to perform poorly relative to variable selection models such as BayesB and BayesC as marker densities increase. A strategy is presented for Bayesian regression models (SSBR) that combines all available data from genotyped and non-genotyped animals, as in SS-BLUP, but accommodates a wider class of models. Our strategy uses imputed marker covariates for animals that are not genotyped, together with an appropriate residual genetic effect to accommodate deviations between true and imputed genotypes. Under normality, one formulation of SSBR yields results identical to SS-BLUP, but does not require computing G or its inverse and provides richer inferences. At present, Bayesian regression analyses are used with a few thousand genotyped individuals. However, when SSBR is applied to all animals in a breeding program, there will be a 100 to 200-fold increase in the number of animals and an associated 100 to 200-fold increase in computing time. Parallel computing strategies can be used to reduce computing time. In one such strategy, a 58-fold speedup was achieved using 120 cores. In SSBR and SS-BLUP, phenotype, genotype and pedigree information are combined in a single-step. Unlike SS-BLUP, SSBR is not limited to normally distributed marker effects; it can be used when marker effects have a t distribution, as in BayesA, or mixture distributions, as in BayesB or BayesC π. Furthermore, it has the advantage that matrix inversion is not required. We have investigated parallel computing to speedup SSBR analyses so they can be used for routine applications.

172 citations


Journal ArticleDOI
TL;DR: Investigation of accuracy of imputation from lower density SNP panels to whole-genome sequence data in a typical dataset for cattle found that SNPs with a low minor allele frequency were more difficult to impute correctly and the reliability of imputations varied more.
Abstract: Background: The use of whole-genome sequence data can lead to higher accuracy in genome-wide association studies and genomic predictions. However, to benefit from whole-genome sequence data, a large dataset of sequenced individuals is needed. Imputation from SNP panels, such as the Illumina BovineSNP50 BeadChip and Illumina BovineHD BeadChip, to whole-genome sequence data is an attractive and less expensive approach to obtain whole-genome sequence genotypes for a large number of individuals than sequencing all individuals. Our objective was to investigate accuracy of imputation from lower density SNP panels to whole-genome sequence data in a typical dataset for cattle. Methods: Whole-genome sequence data of chromosome 1 (1737 471 SNPs) for 114 Holstein Friesian bulls were used. Beagle software was used for imputation from the BovineSNP50 (3132 SNPs) and BovineHD (40 492 SNPs) beadchips. Accuracy was calculated as the correlation between observed and imputed genotypes and assessed by five-fold cross-validation. Three scenarios S40, S60 and S80 with respectively 40%, 60%, and 80% of the individuals as reference individuals were investigated. Results: Mean accuracies of imputation per SNP from the BovineHD panel to sequence data and from the BovineSNP50 panel to sequence data for scenarios S40 and S80 ranged from 0.77 to 0.83 and from 0.37 to 0.46, respectively. Stepwise imputation from the BovineSNP50 to BovineHD panel and then to sequence data for scenario S40 improved accuracy per SNP to 0.65 but it varied considerably between SNPs. Conclusions: Accuracy of imputation to whole-genome sequence data was generally high for imputation from the BovineHD beadchip, but was low from the BovineSNP50 beadchip. Stepwise imputation from the BovineSNP50 to the BovineHD beadchip and then to sequence data substantially improved accuracy of imputation. SNPs with a low minor allele frequency were more difficult to impute correctly and the reliability of imputation varied more. Linkage disequilibrium between an imputed SNP and the SNP on the lower density panel, minor allele frequency of the imputed SNP and size of the reference group affected imputation reliability.

126 citations


Journal ArticleDOI
TL;DR: It is concluded that the availability of the HD chip can be used to detect association signals that remained hidden when using lower density genotyping platforms, since LD dropped below 0.2 at distances of 50 kb.
Abstract: Background The extent of linkage disequilibrium (LD) between molecular markers impacts genome-wide association studies and implementation of genomic selection. The availability of high-density single nucleotide polymorphism (SNP) genotyping platforms makes it possible to investigate LD at an unprecedented resolution. In this work, we characterised LD decay in breeds of beef cattle of taurine, indicine and composite origins and explored its variation across autosomes and the X chromosome.

105 citations


Journal ArticleDOI
TL;DR: Recent advances on the molecular players that participate in the sex determination and differentiation in fish species are reviewed, by putting emphasis on temperature-dependent sexdetermination and differentiation, which include temperature- dependence on female sexual differentiation and genetic sex determination plus temperature effects.
Abstract: The molecular mechanisms that underlie sex determination and differentiation are conserved and diversified. In fish species, temperature-dependent sex determination and differentiation seem to be ubiquitous and molecular players involved in these mechanisms may be conserved. Although how the ambient temperature transduces signals to the undifferentiated gonads remains to be elucidated, the genes downstream in the sex differentiation pathway are shared between sex-determining mechanisms. In this paper, we review recent advances on the molecular players that participate in the sex determination and differentiation in fish species, by putting emphasis on temperature-dependent sex determination and differentiation, which include temperature-dependent sex determination and genetic sex determination plus temperature effects. Application of temperature-dependent sex differentiation in farmed fish and the consequences of temperature-induced sex reversal are discussed.

94 citations


Journal ArticleDOI
TL;DR: Traits associated with response to PRRSV infection in growing pigs are largely controlled by genomic regions with relatively small effects, with the exception of SSC4, and results show that selection for the SSC 4 region could potentially reduce the effects of PRRS ingrowing pigs, ultimately reducing the economic impact of this disease.
Abstract: Host genetics has been shown to play a role in porcine reproductive and respiratory syndrome (PRRS), which is the most economically important disease in the swine industry. A region on Sus scrofa chromosome (SSC) 4 has been previously reported to have a strong association with serum viremia and weight gain in pigs experimentally infected with the PRRS virus (PRRSV). The objective here was to identify haplotypes associated with the favorable phenotype, investigate additional genomic regions associated with host response to PRRSV, and to determine the predictive ability of genomic estimated breeding values (GEBV) based on the SSC4 region and based on the rest of the genome. Phenotypic data and 60 K SNP genotypes from eight trials of ~200 pigs from different commercial crosses were used to address these objectives. Across the eight trials, heritability estimates were 0.44 and 0.29 for viral load (VL, area under the curve of log-transformed serum viremia from 0 to 21 days post infection) and weight gain to 42 days post infection (WG), respectively. Genomic regions associated with VL were identified on chromosomes 4, X, and 1. Genomic regions associated with WG were identified on chromosomes 4, 5, and 7. Apart from the SSC4 region, the regions associated with these two traits each explained less than 3% of the genetic variance. Due to the strong linkage disequilibrium in the SSC4 region, only 19 unique haplotypes were identified across all populations, of which four were associated with the favorable phenotype. Through cross-validation, accuracies of EBV based on the SSC4 region were high (0.55), while the rest of the genome had little predictive ability across populations (0.09). Traits associated with response to PRRSV infection in growing pigs are largely controlled by genomic regions with relatively small effects, with the exception of SSC4. Accuracies of EBV based on the SSC4 region were high compared to the rest of the genome. These results show that selection for the SSC4 region could potentially reduce the effects of PRRS in growing pigs, ultimately reducing the economic impact of this disease.

85 citations


Journal ArticleDOI
TL;DR: The Genetics Selection Evolution Editors-in-Chief would like to thank all of the reviewers who contributed to peer review for the journal in 2013.
Abstract: The Genetics Selection Evolution Editors-in-Chief would like to thank all of our reviewers who contributed to peer review for the journal in 2013.

82 citations


Journal ArticleDOI
TL;DR: The VarLD method is a powerful tool to identify differences in linkage disequilibrium between cattle populations and putative signatures of selection with potential adaptive and productive importance.
Abstract: Background: Signatures of selection are regions in the genome that have been preferentially increased in frequency and fixed in a population because of their functional importance in specific processes. These regions can be detected because of their lower genetic variability and specific regional linkage disequilibrium (LD) patterns. Methods: By comparing the differences in regional LD variation between dairy and beef cattle types, and between indicine and taurine subspecies, we aim at finding signatures of selection for production and adaptation in cattle breeds. The VarLD method was applied to compare the LD variation in the autosomal genome between breeds, including Angus and Brown Swiss, representing taurine breeds, and Nelore and Gir, representing indicine breeds. Genomic regions containing the top 0.01 and 0.1 percentile of signals were characterized using the UMD3.1 Bos taurus genome assembly to identify genes in those regions and compared with previously reported selection signatures and regions with copy number variation. Results: For all comparisons, the top 0.01 and 0.1 percentile included 26 and 165 signals and 17 and 125 genes, respectively, including TECRL, BT.23182 or FPPS, CAST, MYOM1, UVRAG and DNAJA1. Conclusions: The VarLD method is a powerful tool to identify differences in linkage disequilibrium between cattle populations and putative signatures of selection with potential adaptive and productive importance.

80 citations


Journal ArticleDOI
TL;DR: Bayesian regression models are of interest for future applications of genomic selection in this population of Bos indicus (Nellore), but further improvements are needed to reduce deflation of their predictions.
Abstract: Background: Nellore cattle play an important role in beef production in tropical systems and there is great interest in determining if genomic selection can contribute to accelerate genetic improvement of production and fertility in this breed. We present the first results of the implementation of genomic prediction in a Bos indicus (Nellore) population. Methods: Influential bulls were genotyped with the Illumina Bovine HD chip in order to assess genomic predictive ability for weight and carcass traits, gestation length, scrotal circumference and two selection indices. 685 samples and 320 238 single nucleotide polymorphisms (SNPs) were used in the analyses. A forward-prediction scheme was adopted to predict the genomic breeding values (DGV). In the training step, the estimated breeding values (EBV) of bulls were deregressed (dEBV) and used as pseudo-phenotypes to estimate marker effects using four methods: genomic BLUP with or without a residual polygenic effect (GBLUP20 and GBLUP0, respectively), a mixture model (Bayes C) and Bayesian LASSO (BLASSO). Empirical accuracies of the resulting genomic predictions were assessed based on the correlation between DGV and dEBV for the testing group. Results: Accuracies of genomic predictions ranged from 0.17 (navel at weaning) to 0.74 (finishing precocity). Across traits, Bayesian regression models (Bayes C and BLASSO) were more accurate than GBLUP. The average empirical accuracies were 0.39 (GBLUP0), 0.40 (GBLUP20) and 0.44 (Bayes C and BLASSO). Bayes C and BLASSO tended to produce deflated predictions (i.e. slope of the regression of dEBV on DGV greater than 1). Further analyses suggested that higher-than-expected accuracies were observed for traits for which EBV means differed significantly between two breeding subgroups that were identified in a principal component analysis based on genomic relationships. Conclusions: Bayesian regression models are of interest for future applications of genomic selection in this population, but further improvements are needed to reduce deflation of their predictions. Recurrent updates of the training population would be required to enable accurate prediction of the genetic merit of young animals. The technical feasibility of applying genomic prediction in a Bos indicus (Nellore) population was demonstrated. Further research is needed to permit cost-effective selection decisions using genomic information.

79 citations


Journal ArticleDOI
TL;DR: If the Illumina® BovineHD is considered as the target chip for genomic applications in the Nelore breed, cost-effectiveness can be improved by genotyping part of the animals with a chip containing around 15 K useful SNPs and imputing their high-density missing genotypes with FImpute.
Abstract: Background: Genotype imputation from low-density (LD) to high-density single nucleotide polymorphism (SNP) chips is an important step before applying genomic selection, since denser chips tend to provide more reliable genomic predictions. Imputation methods rely partially on linkage disequilibrium between markers to infer unobserved genotypes. Bos indicus cattle (e.g. Nelore breed) are characterized, in general, by lower levels of linkage disequilibrium between genetic markers at short distances, compared to taurine breeds. Thus, it is important to evaluate the accuracy of imputation to better define which imputation method and chip are most appropriate for genomic applications in indicine breeds. Methods: Accuracy of genotype imputation in Nelore cattle was evaluated using different LD chips, imputation software and sets of animals. Twelve commercial and customized LD chips with densities ranging from 7 K to 75 K were tested. Customized LD chips were virtually designed taking into account minor allele frequency, linkage disequilibrium and distance between markers. Software programs FImpute and BEAGLE were applied to impute genotypes. From 995 bulls and 1247 cows that were genotyped with the Illumina® BovineHD chip (HD), 793 sires composed the reference set, and the remaining 202 younger sires and all the cows composed two separate validation sets for which genotypes were masked except for the SNPs of the LD chip that were to be tested. Results: Imputation accuracy increased with the SNP density of the LD chip. However, the gain in accuracy with LD chips with more than 15 K SNPs was relatively small because accuracy was already high at this density. Commercial and customized LD chips with equivalent densities presented similar results. FImpute outperformed BEAGLE for all LD chips and validation sets. Regardless of the imputation software used, accuracy tended to increase as the relatedness between imputed and reference animals increased, especially for the 7 K chip. Conclusions: If the Illumina® BovineHD is considered as the target chip for genomic applications in the Nelore breed, cost-effectiveness can be improved by genotyping part of the animals with a chip containing around 15 K useful SNPs and imputing their high-density missing genotypes with FImpute.

75 citations


Journal ArticleDOI
TL;DR: Estimated dominance variance was substantial for most of the analyzed traits and Exploitation of dominance variance in assortative matings was promising and did not appear to severely compromise additive genetic gain.
Abstract: Estimates of dominance variance in dairy cattle based on pedigree data vary considerably across traits and amount to up to 50% of the total genetic variance for conformation traits and up to 43% for milk production traits Using bovine SNP (single nucleotide polymorphism) genotypes, dominance variance can be estimated both at the marker level and at the animal level using genomic dominance effect relationship matrices Yield deviations of high-density genotyped Fleckvieh cows were used to assess cross-validation accuracy of genomic predictions with additive and dominance models The potential use of dominance variance in planned matings was also investigated Variance components of nine milk production and conformation traits were estimated with additive and dominance models using yield deviations of 1996 Fleckvieh cows and ranged from 33% to 505% of the total genetic variance REML and Gibbs sampling estimates showed good concordance Although standard errors of estimates of dominance variance were rather large, estimates of dominance variance for milk, fat and protein yields, somatic cell score and milkability were significantly different from 0 Cross-validation accuracy of predicted breeding values was higher with genomic models than with the pedigree model Inclusion of dominance effects did not increase the accuracy of the predicted breeding and total genetic values Additive and dominance SNP effects for milk yield and protein yield were estimated with a BLUP (best linear unbiased prediction) model and used to calculate expectations of breeding values and total genetic values for putative offspring Selection on total genetic value instead of breeding value would result in a larger expected total genetic superiority in progeny, ie 148% for milk yield and 278% for protein yield and reduce the expected additive genetic gain only by 45% for milk yield and 26% for protein yield Estimated dominance variance was substantial for most of the analyzed traits Due to small dominance effect relationships between cows, predictions of individual dominance deviations were very inaccurate and including dominance in the model did not improve prediction accuracy in the cross-validation study Exploitation of dominance variance in assortative matings was promising and did not appear to severely compromise additive genetic gain

Journal Article
TL;DR: PicoCTF focused primarily on offense and presented challenges in the form of a web-based game and has been adapted into the curricula of 40 high schools and used to host six other capturethe-flag competitions.
Abstract: The shortage of computer security experts is a critical problem To encourage greater computer science interest among high school students, we designed and hosted a computer security competition called PicoCTF Unlike existing competitions, PicoCTF focused primarily on offense and presented challenges in the form of a web-based game Approximately 2,000 teams participated, with students playing for an average of 12 hours We present the game-based competition design, an evaluation based on survey responses and website interaction statistics, and insights into the students who played Further we have released our platform and challenges as an open source project, which has been adapted into the curricula of 40 high schools Since its release in August of 2013, the PicoCTF platform has been used to host six other capturethe-flag competitions

Journal ArticleDOI
TL;DR: GWAS analyses with the PorcineSNP60 BeadChip enabled the detection of 23 QTL regions that affect feed consumption, carcass and meat quality traits in a LW population, of which 13 were novel QTL.
Abstract: Background: Numerous quantitative trait loci (QTL) have been detected in pigs over the past 20 years using microsatellite markers. However, due to the low density of these markers, the accuracy of QTL location has generally been poor. Since 2009, the dense genome coverage provided by the Illumina PorcineSNP60 BeadChip has made it possible to more accurately map QTL using genome-wide association studies (GWAS). Our objective was to perform high-density GWAS in order to identify genomic regions and corresponding haplotypes associated with production traits in a French Large White population of pigs. Methods: Animals (385 Large White pigs from 106 sires) were genotyped using the PorcineSNP60 BeadChip and evaluated for 19 traits related to feed intake, growth, carcass composition and meat quality. Of the 64 432 SNPs on the chip, 44 412 were used for GWAS with an animal mixed model that included a regression coefficient for the tested SNPs and a genomic kinship matrix. SNP haplotype effects in QTL regions were then tested for association with phenotypes following phase reconstruction based on the Sscrofa10.2 pig genome assembly. Results: Twenty-three QTL regions were identified on autosomes and their effects ranged from 0.25 to 0.75 phenotypic standard deviation units for feed intake and feed efficiency (four QTL), carcass (12 QTL) and meat quality traits (seven QTL). The 10 most significant QTL regions had effects on carcass (chromosomes 7, 10, 16, 17 and 18) and meat quality traits (two regions on chromosome 1 and one region on chromosomes 8, 9 and 13). Thirteen of the 23 QTL regions had not been previously described. A haplotype block of 183 kb on chromosome 1 (six SNPs) was identified and displayed three distinct haplotypes with significant (0.0001 < P < 0.03) associations with all evaluated meat quality traits. Conclusions: GWAS analyses with the PorcineSNP60 BeadChip enabled the detection of 23 QTL regions that affect feed consumption, carcass and meat quality traits in a LW population, of which 13 were novel QTL. The proportionally larger number of QTL found for meat quality traits suggests a specific opportunity for improving these traits in the pig by genomic selection.

Journal ArticleDOI
TL;DR: Wei and van der Werf as mentioned in this paper presented a model for genetic evaluation using information from both purebred and crossbred animals, which can be implemented using software that allows inverse covariance matrices in sparse format as input.
Abstract: For a two-breed crossbreeding system, Wei and van der Werf presented a model for genetic evaluation using information from both purebred and crossbred animals. The model provides breeding values for both purebred and crossbred performances. Genomic evaluation incorporates marker genotypes into a genetic evaluation system. Among popular methods are the so-called single-step methods, in which marker genotypes are incorporated into a traditional animal model by using a combined relationship matrix that extends the marker-based relationship matrix to non-genotyped animals. However, a single-step method for genomic evaluation of both purebred and crossbred performances has not been developed yet. An extension of the Wei and van der Werf model that incorporates genomic information is presented. The extension consists of four steps: (1) the Wei van der Werf model is reformulated using two partial relationship matrices for the two breeds; (2) marker-based partial relationship matrices are constructed; (3) marker-based partial relationship matrices are adjusted to be compatible to pedigree-based partial relationship matrices and (4) combined partial relationship matrices are constructed using information from both pedigree and marker genotypes. The extension of the Wei van der Werf model can be implemented using software that allows inverse covariance matrices in sparse format as input. A method for genomic evaluation of both purebred and crossbred performances was developed for a two-breed crossbreeding system. The method allows information from crossbred animals to be incorporated in a coherent manner for such crossbreeding systems.

Journal Article
TL;DR: This paper presents a framework that is based on the lessons learned in running, for more than 10 years, the largest educational CTF in the world, called iCTF, to provide educational institutions and other organizations with the ability to run customizable CTF competitions.
Abstract: Author(s): Vigna, Giovanni; Borgolte, Kevin; Corbetta, Jacopo; Doupe, Adam; Fratantonio, Yanick; Invernizzi, Luca; Kirat, Dhilung; Shoshitaishvili, Yan | Abstract: Security competitions have become a popular way to foster security education by creating a competitive environment in which participants go beyond the effort usually required in traditional security courses. Live security competitions (also called “Capture The Flag,” or CTF competitions) are particularly well-suited to support hands-on experience, as they usually have both an attack and a defense component. Unfortunately, because these competitions put several (possibly many) teams against one another, they are difficult to design, implement, and run. This paper presents a framework that is based on the lessons learned in running, for more than 10 years, the largest educational CTF in the world, called iCTF. The framework’s goal is to provide educational institutions and other organizations with the ability to run customizable CTF competitions. The framework is open and leverages the security community for the creation of a corpus of educational security challenges.

Journal ArticleDOI
TL;DR: In this article, all progeny-tested bucks from the two main French dairy goat breeds (Alpine and Saanen) were genotyped with the Illumina goat SNP50 BeadChip.
Abstract: Background All progeny-tested bucks from the two main French dairy goat breeds (Alpine and Saanen) were genotyped with the Illumina goat SNP50 BeadChip. The reference population consisted of 677 bucks and 148 selection candidates. With the two-step approach based on genomic best linear unbiased prediction (GBLUP), prediction accuracy of candidates did not outperform that of the parental average. We investigated a GBLUP method based on a single-step approach, with or without blending of the two breeds in the reference population.

Journal ArticleDOI
TL;DR: The hypothesis that intermediate-aged relationships yield more accurate genomic predictions than G was confirmed and estimated genotype probabilities for ungenotyped animals proved to be an efficient method to include the phenotypes of ungenotypeed animals.
Abstract: With the advent of genomic selection, alternative relationship matrices are used in animal breeding, which vary in their coverage of distant relationships due to old common ancestors. Relationships based on pedigree (A) and linkage analysis (G LA ) cover only recent relationships because of the limited depth of the known pedigree. Relationships based on identity-by-state (G) include relationships up to the age of the SNP (single nucleotide polymorphism) mutations. We hypothesised that the latter relationships were too old, since QTL (quantitative trait locus) mutations for traits under selection were probably more recent than the SNPs on a chip, which are typically selected for high minor allele frequency. In addition, A and G LA relationships are too recent to cover genetic differences accurately. Thus, we devised a relationship matrix that considered intermediate-aged relationships and compared all these relationship matrices for their accuracy of genomic prediction in a pig breeding situation. Haplotypes were constructed and used to build a haplotype-based relationship matrix (G H ), which considers more intermediate-aged relationships, since haplotypes recombine more quickly than SNPs mutate. Dense genotypes (38 453 SNPs) on 3250 elite breeding pigs were combined with phenotypes for growth rate (2668 records), lean meat percentage (2618), weight at three weeks of age (7387) and number of teats (5851) to estimate breeding values for all animals in the pedigree (8187 animals) using the aforementioned relationship matrices. Phenotypes on the youngest 424 to 486 animals were masked and predicted in order to assess the accuracy of the alternative genomic predictions. Correlations between the relationships and regressions of older on younger relationships revealed that the age of the relationships increased in the order A, G LA , G H and G. Use of genomic relationship matrices yielded significantly higher prediction accuracies than A. G H and G, differed not significantly, but were significantly more accurate than G LA . Our hypothesis that intermediate-aged relationships yield more accurate genomic predictions than G was confirmed for two of four traits, but these results were not statistically significant. Use of estimated genotype probabilities for ungenotyped animals proved to be an efficient method to include the phenotypes of ungenotyped animals.

Journal Article
Adam Shostack1
TL;DR: The objectives and design of the game, as well as tradeoffs made and lessons learned while building it, are shared, and discussion of other areas where games may help information security professionals reach important goals are discussed.
Abstract: This paper presents Elevation of Privilege, a game designed to draw people who are not security practitioners into the craft of threat modeling. The game uses a variety of techniques to do so in an enticing, supportive and non-threatening way. The subject of security tools for software engineering has not generally been studied carefully. This paper shares the objectives and design of the game, as well as tradeoffs made and lessons learned while building it. It concludes with discussion of other areas where games may help information security professionals reach important goals.

Journal ArticleDOI
TL;DR: A genetic selection design that includes both direct genetic and indirect genetic effects could reduce the frequency of bite marks and probably aggression behaviour in group-housed mink.
Abstract: Background Since the recommendations on group housing of mink (Neovison vison) were adopted by the Council of Europe in 1999, it has become common in mink production in Europe. Group housing is advantageous from a production perspective, but can lead to aggression between animals and thus raises a welfare issue. Bite marks on the animals are an indicator of this aggressive behaviour and thus selection against frequency of bite marks should reduce aggression and improve animal welfare. Bite marks on one individual reflect the aggression of its group members, which means that the number of bite marks carried by one individual depends on the behaviour of other individuals and that it may have a genetic basis. Thus, for a successful breeding strategy it could be crucial to consider both direct (DGE) and indirect (IGE) genetic effects on this trait. However, to date no study has investigated the genetic basis of bite marks in mink.

Journal ArticleDOI
TL;DR: The results support the polygenic nature of the genetic determination of SCS, confirm the importance of previously reported QTL, and provide evidence for the segregation of additional QTL for SCS in Holstein cattle.
Abstract: To better understand the genetic determination of udder health, we performed a genome-wide association study (GWAS) on a population of 2354 German Holstein bulls for which daughter yield deviations (DYD) for somatic cell score (SCS) were available. For this study, we used genetic information of 44 576 informative single nucleotide polymorphisms (SNPs) and 11 725 inferred haplotype blocks. When accounting for the sub-structure of the analyzed population, 16 SNPs and 10 haplotypes in six genomic regions were significant at the Bonferroni threshold of P ≤ 1.14 × 10-6. The size of the identified regions ranged from 0.05 to 5.62 Mb. Genomic regions on chromosomes 5, 6, 18 and 19 coincided with known QTL affecting SCS, while additional genomic regions were found on chromosomes 13 and X. Of particular interest is the region on chromosome 6 between 85 and 88 Mb, where QTL for mastitis traits and significant SNPs for SCS in different Holstein populations coincide with our results. In all identified regions, except for the region on chromosome X, significant SNPs were present in significant haplotypes. The minor alleles of identified SNPs on chromosomes 18 and 19, and the major alleles of SNPs on chromosomes 6 and X were favorable for a lower SCS. Differences in somatic cell count (SCC) between alternative SNP alleles reached 14 000 cells/mL. The results support the polygenic nature of the genetic determination of SCS, confirm the importance of previously reported QTL, and provide evidence for the segregation of additional QTL for SCS in Holstein cattle. The small size of the regions identified here will facilitate the search for causal genetic variations that affect gene functions.

Journal ArticleDOI
TL;DR: It is concluded that the 80-kb duplication, as the only remaining variant within the shortened Friesian haplotype, represents the most likely causal mutation for the polled phenotype of Friesia origin.
Abstract: Background: The absence of horns, called polled phenotype, is the favored trait in modern cattle husbandry. To date, polled cattle are obtained primarily by dehorning calves. Dehorning is a practice that raises animal welfare issues, which can be addressed by selecting for genetically hornless cattle. In the past 20 years, there have been many studies worldwide to identify unique genetic markers in complete association with the polled trait in cattle and recently, two different alleles at the POLLED locus, both resulting in the absence of horns, were reported: (1) the Celtic allele, which is responsible for the polled phenotype in most breeds and for which a single candidate mutation was detected and (2) the Friesian allele, which is responsible for the polled phenotype predominantly in the Holstein-Friesian breed and in a few other breeds, but for which five candidate mutations were identified in a 260-kb haplotype. Further studies based on genome-wide sequencing and high-density SNP (single nucleotide polymorphism) genotyping confirmed the existence of the Celtic and Friesian variants and narrowed down the causal Friesian haplotype to an interval of 145 kb. Results: Almost 6000 animals were genetically tested for the polled trait and we detected a recombinant animal which enabled us to reduce the Friesian POLLED haplotype to a single causal mutation, namely a 80-kb duplication. Moreover, our results clearly disagree with the recently reported perfect co-segregation of the POLLED mutation and a SNP at position 1 390 292 bp on bovine chromosome 1 in the Holstein-Friesian population. Conclusion: We conclude that the 80-kb duplication, as the only remaining variant within the shortened Friesian haplotype, represents the most likely causal mutation for the polled phenotype of Friesian origin.

Journal ArticleDOI
TL;DR: This work presents a simple equation to predict the SE of r^g between traits recorded on distinct individuals for nested full-half sib schemes with common-litter effects, using the purebred-crossbred genetic correlation as an example.
Abstract: Background: The additive genetic correlation (rg) is a key parameter in livestock genetic improvement. The standard error (SE) of an estimate of rg, ^g, depends on whether both traits are recorded on the same individual or on distinct individuals. The genetic correlation between traits recorded on distinct individuals is relevant as a measure of, e.g., genotype-by-environment interaction and for traits expressed in purebreds vs. crossbreds. In crossbreeding schemes, rg between the purebred and crossbred trait is the key parameter that determines the need for crossbred information. This work presents a simple equation to predict the SE of ^rg between traits recorded on distinct individuals for nested full-half sib schemes with common-litter effects, using the purebred-crossbred genetic correlation as an example. The resulting expression allows ap riori optimization of designs that aim at estimating rg. An R-script that implements the expression is included. Results: The SE of ^rg is determined by the true value of rg, the number of sire families (N), and the reliabilities of sire estimated breeding values (EBV):

Journal ArticleDOI
TL;DR: This work shows how the relationship matrix and its inverse can be developed for honey bee populations, and used to estimate breeding values and variance components.
Abstract: Background: Efficient methodologies based on animal models are widely used to estimate breeding values in farm animals. These methods are not applicable in honey bees because of their mode of reproduction. Observations are recorded on colonies, which consist of a single queen and thousands of workers that descended from the queen mated to 10 to 20 drones. Drones are haploid and sperms are copies of a drone’s genotype. As a consequence, Mendelian sampling terms of full-sibs are correlated, such that the covariance matrix of Mendelian sampling terms is not diagonal. Results: In this paper, we show how the numerator relationship matrix and its inverse can be obtained for honey bee populations. We present algorithms to derive the covariance matrix of Mendelian sampling terms that accounts for correlated terms. The resulting matrix is a block-diagonal matrix, with a small block for each full-sib family, and is easy to invert numerically. The method allows incorporating the within-colony distribution of progeny from drone-producing queens and drones, such that estimates of breeding values weigh information from relatives appropriately. Simulation shows that the resulting estimated breeding values are unbiased predictors of true breeding values. Benefits for response to selection, compared to an existing approximate method, appear to be limited (~5%). Benefits may however be greater when estimating genetic parameters. Conclusions: This work shows how the relationship matrix and its inverse can be developed for honey bee populations, and used to estimate breeding values and variance components.

Journal Article
TL;DR: Class Capture-theFlag exercises (CCTFs) are proposed to revitalize cybersecurity education and are described how to design these exercises to be easy for teachers to conduct and grade, easy for students to prepare for and a lot of fun for everyone involved.
Abstract: The field of cybersecurity is adversarial – the real challenge lies in outsmarting motivated and knowledgeable human attackers. Sadly, this aspect is missing from current cybersecurity classes, which are often taught through lectures and occasionally through “get your feet wet” practical exercises. We propose Class Capture-theFlag exercises (CCTFs) to revitalize cybersecurity education. These are small-scoped competitions that pit teams of students against each other in realistic attackdefense scenarios. We describe how to design these exercises to be easy for teachers to conduct and grade, easy for students to prepare for and a lot of fun for everyone involved. We also provide descriptions of CCTFs we have developed and recount our experiences of using them in class.

Journal ArticleDOI
TL;DR: Genetic variants in the involution pathway explained considerably more genetic variation in milk production traits than expected by chance, and many of the associations for single nucleotide polymorphisms in genes in this pathway have not been detected in conventional genome-wide association studies.
Abstract: Background: The maintenance of lactation in mammals is the result of a balance between competing signals from mammary development, prolactin signalling and involution pathways. Dairy cattle are an interesting case study to investigate the effect of polymorphisms that affect the function of genes in these pathways. In dairy cattle, lactation yields and milk composition (for example protein percentage and fat percentage) are routinely recorded, and these vary greatly between individuals. In this study, we test 8058 single nucleotide polymorphisms in or close to genes in these pathways for association with milk production traits and determine the proportion of variance explained by each pathway, using data on 16 812 dairy cattle, including Holstein-Friesian and Jersey bulls and cows. Results: Single nucleotide polymorphisms close to genes in the mammary development, prolactin signalling and involution pathways were significantly associated with milk production traits. The involution pathway explained the largest proportion of genetic variation for production traits. The mammary development pathway also explained additional genetic variation for milk volume, fat percentage and protein percentage. Conclusions: Genetic variants in the involution pathway explained considerably more genetic variation in milk production traits than expected by chance. Many of the associations for single nucleotide polymorphisms in genes in this pathway have not been detected in conventional genome-wide association studies. The pathway approach used here allowed us to identify some novel candidates for further studies that will be aimed at refining the location of associated genomic regions and identifying polymorphisms contributing to variation in lactation volume and milk composition.

Journal Article
TL;DR: This paper details the experiences in a third year of designing, building and running a CTF for Boston-area undergraduate and graduate students, and provides a concrete context for a broader discussion and deeper questions on the value and future of this type of activity.
Abstract: Capture the Flag (CTF) is well-established as a computer security contest of skill in which teams compete in real time for prizes and bragging rights. At the time of this writing, CTFtime.org [4]—a tracking web site devoted to aggregating team standings across various CTF events— lists 76 such contests, and more spring up each year. But what is the point, exactly? In this paper we detail our experiences in a third year of designing, building and running a CTF for Boston-area undergraduate and graduate students. This will serve two purposes: first, others desiring to stage such an event can benefit from our experience, and second, the details of our CTF will provide a concrete context for a broader discussion and deeper questions on the value and future of this type of activity.

Journal ArticleDOI
TL;DR: DAGPHASE was superior to BEAGLE in haplotype phasing, which indicates that linkage information from relatives can improve its accuracy, and Recombination analysis may improve the accuracy of haplotypes phasing and genotype imputation from low- to high-density SNP panels.
Abstract: Recombination events tend to occur in hotspots and vary in number among individuals. The presence of recombination influences the accuracy of haplotype phasing and the imputation of missing genotypes. Genes that influence genome-wide recombination rate have been discovered in mammals, yeast, and plants. Our aim was to investigate the influence of recombination on haplotype phasing, locate recombination hotspots, scan the genome for Quantitative Trait Loci (QTL) and identify candidate genes that influence recombination, and quantify the impact of recombination on the accuracy of genotype imputation in beef cattle. 2775 Angus and 1485 Limousin parent-verified sire/offspring pairs were genotyped with the Illumina BovineSNP50 chip. Haplotype phasing was performed with DAGPHASE and BEAGLE using UMD3.1 assembly SNP (single nucleotide polymorphism) coordinates. Recombination events were detected by comparing the two reconstructed chromosomal haplotypes inherited by each offspring with those of their sires. Expected crossover probabilities were estimated assuming no interference and a binomial distribution for the frequency of crossovers. The BayesB approach for genome-wide association analysis implemented in the GenSel software was used to identify genomic regions harboring QTL with large effects on recombination. BEAGLE was used to impute Angus genotypes from a 7K subset to the 50K chip. DAGPHASE was superior to BEAGLE in haplotype phasing, which indicates that linkage information from relatives can improve its accuracy. The estimated genetic length of the 29 bovine autosomes was 3097 cM, with a genome-wide recombination distance averaging 1.23 cM/Mb. 427 and 348 windows containing recombination hotspots were detected in Angus and Limousin, respectively, of which 166 were in common. Several significant SNPs and candidate genes, which influence genome-wide recombination were localized in QTL regions detected in the two breeds. High-recombination rates hinder the accuracy of haplotype phasing and genotype imputation. Small population sizes, inadequate half-sib family sizes, recombination, gene conversion, genotyping errors, and map errors reduce the accuracy of haplotype phasing and genotype imputation. Candidate regions associated with recombination were identified in both breeds. Recombination analysis may improve the accuracy of haplotype phasing and genotype imputation from low- to high-density SNP panels.

Journal Article
TL;DR: In insights and lessons learned from organizing CSAW CTF, one of the largest and most successful CTFs, are presented.
Abstract: Capture The Flag (CTF) competitions have been used in the computer security community for education and evaluation objectives for over a decade. These competitions are often regarded as excellent approaches to learn deeply technical concepts in a fun, non-traditional learning environment, but there are many difficulties associated with developing and competing in a CTF event that are rarely discussed that counteract these benefits. CTF competitions often have issues related to participation, quality assurance, and confusing challenges. These problems affect the overall quality of a CTF competition and describe how effective they are at catalyzing learning and assessing skill. In this paper, we present insights and lessons learned from organizing CSAW CTF, one of the largest and most successful CTFs.

Journal ArticleDOI
TL;DR: The study shows that low-cost GS programs can be successful by combining sparse and selective genotyping with pedigree and linkage information, and was substantially more effective than classical selection, even when based on very few markers and combined with selective genotypes of small fractions of the population.
Abstract: Genomic selection methods require dense and widespread genotyping data, posing a particular challenge if both sexes are subject to intense selection (e.g., aquaculture species). This study focuses on alternative low-cost genomic selection methods (IBD-GS) that use selective genotyping with sparse marker panels to estimate identity-by-descent relationships through linkage analysis. Our aim was to evaluate the potential of these methods in selection programs for continuous traits measured on sibs of selection candidates in a typical aquaculture breeding population. Phenotypic and genomic data were generated by stochastic simulation, assuming low to moderate heritabilities (0.10 to 0.30) for a Gaussian trait measured on sibs of the selection candidates in a typical aquaculture breeding population that consisted of 100 families (100 training animals and 20 selection candidates per family). Low-density marker genotype data (~ 40 markers per Morgan) were used to trace genomic identity-by-descent relationships. Genotyping was restricted to selection candidates from 30 phenotypically top-ranking families and varying fractions of their phenotypically extreme training sibs. All phenotypes were included in the genetic analyses. Classical pedigree-based and IBD-GS models were compared based on realized genetic gain over one generation of selection. Genetic gain increased substantially (13 to 32%) with IBD-GS compared to classical selection and was greatest with higher heritability. Most of the extra gain from IBD-GS was obtained already by genotyping the 5% phenotypically most extreme sibs within the pre-selected families. Additional genotyping further increased genetic gains, but these were small when going from genotyping 20% of the extremes to all phenotyped sibs. The success of IBD-GS with sparse and selective genotyping can be explained by the fact that within-family haplotype blocks are accurately traced even with low-marker densities and that most of the within-family variance for normally distributed traits is captured by a small proportion of the phenotypically extreme sibs. IBD-GS was substantially more effective than classical selection, even when based on very few markers and combined with selective genotyping of small fractions of the population. The study shows that low-cost GS programs can be successful by combining sparse and selective genotyping with pedigree and linkage information.

Journal ArticleDOI
TL;DR: Neutral variation can be shaped to a great extent by the hitch-hiking effects associated with selection, rather than just by genetic drift, when implementing long-term genomic selection.
Abstract: Background: Genomic selection makes it possible to reduce pedigree-based inbreeding over best linear unbiased prediction (BLUP) by increasing emphasis on own rather than family information. However, pedigree inbreeding might not accurately reflect loss of genetic variation and the true level of inbreeding due to changes in allele frequencies and hitch-hiking. This study aimed at understanding the impact of using long-term genomic selection on changes in allele frequencies, genetic variation and level of inbreeding. Methods: Selection was performed in simulated scenarios with a population of 400 animals for 25 consecutive generations. Six genetic models were considered with different heritabilities and numbers of QTL (quantitative trait loci) affecting the trait. Four selection criteria were used, including selection on own phenotype and on estimated breeding values (EBV) derived using phenotype-BLUP, genomic BLUP and Bayesian Lasso. Changes in allele frequencies at QTL, markers and linked neutral loci were investigated for the different selection criteria and different scenarios, along with the loss of favourable alleles and the rate of inbreeding measured by pedigree and runs of homozygosity. Results: For each selection criterion, hitch-hiking in the vicinity of the QTL appeared more extensive when accuracy of selection was higher and the number of QTL was lower. When inbreeding was measured by pedigree information, selection on genomic BLUP EBV resulted in lower levels of inbreeding than selection on phenotype BLUP EBV, but this did not always apply when inbreeding was measured by runs of homozygosity. Compared to genomic BLUP, selection on EBV from Bayesian Lasso led to less genetic drift, reduced loss of favourable alleles and more effectively controlled the rate of both pedigree and genomic inbreeding in all simulated scenarios. In addition, selection on EBV from Bayesian Lasso showed a higher selection differential for mendelian sampling terms than selection on genomic BLUP EBV. Conclusions: Neutral variation can be shaped to a great extent by the hitch-hiking effects associated with selection, rather than just by genetic drift. When implementing long-term genomic selection, strategies for genomic control of inbreeding are essential, due to a considerable hitch-hiking effect, regardless of the method that is used for prediction of EBV.