scispace - formally typeset
Search or ask a question

Showing papers in "IEEE Transactions on Wireless Communications in 2017"


Journal ArticleDOI
TL;DR: In this article, a new design paradigm that jointly considers both the communication throughput and the UAV's energy consumption was proposed to maximize the energy efficiency of UAV communications with a ground terminal.
Abstract: Wireless communication with unmanned aerial vehicles (UAVs) is a promising technology for future communication systems. In this paper, assuming that the UAV flies horizontally with a fixed altitude, we study energy-efficient UAV communication with a ground terminal via optimizing the UAV’s trajectory, a new design paradigm that jointly considers both the communication throughput and the UAV’s energy consumption. To this end, we first derive a theoretical model on the propulsion energy consumption of fixed-wing UAVs as a function of the UAV’s flying speed, direction, and acceleration. Based on the derived model and by ignoring the radiation and signal processing energy consumption, the energy efficiency of UAV communication is defined as the total information bits communicated normalized by the UAV propulsion energy consumed for a finite time horizon. For the case of unconstrained trajectory optimization, we show that both the rate-maximization and energy-minimization designs lead to vanishing energy efficiency and thus are energy-inefficient in general. Next, we introduce a simple circular UAV trajectory, under which the UAV’s flight radius and speed are jointly optimized to maximize the energy efficiency. Furthermore, an efficient design is proposed for maximizing the UAV’s energy efficiency with general constraints on the trajectory, including its initial/final locations and velocities, as well as minimum/maximum speed and acceleration. Numerical results show that the proposed designs achieve significantly higher energy efficiency for UAV communication as compared with other benchmark schemes.

1,653 citations


Journal ArticleDOI
TL;DR: In this paper, the authors proposed a max-min power control algorithm to ensure uniformly good service throughout the area of coverage in a cell-free massive MIMO system, where each user is served by a dedicated access point.
Abstract: A Cell-Free Massive MIMO (multiple-input multiple-output) system comprises a very large number of distributed access points (APs), which simultaneously serve a much smaller number of users over the same time/frequency resources based on directly measured channel characteristics. The APs and users have only one antenna each. The APs acquire channel state information through time-division duplex operation and the reception of uplink pilot signals transmitted by the users. The APs perform multiplexing/de-multiplexing through conjugate beamforming on the downlink and matched filtering on the uplink. Closed-form expressions for individual user uplink and downlink throughputs lead to max–min power control algorithms. Max–min power control ensures uniformly good service throughout the area of coverage. A pilot assignment algorithm helps to mitigate the effects of pilot contamination, but power control is far more important in that regard. Cell-Free Massive MIMO has considerably improved performance with respect to a conventional small-cell scheme, whereby each user is served by a dedicated AP, in terms of both 95%-likely per-user throughput and immunity to shadow fading spatial correlation. Under uncorrelated shadow fading conditions, the cell-free scheme provides nearly fivefold improvement in 95%-likely per-user throughput over the small-cell scheme, and tenfold improvement when shadow fading is correlated.

1,234 citations


Journal ArticleDOI
TL;DR: This paper studies resource allocation for a multiuser MECO system based on time-division multiple access (TDMA) and orthogonal frequency-divisionmultiple access (OFDMA), for which the optimal resource allocation is formulated as a mixed-integer problem.
Abstract: Mobile-edge computation offloading (MECO) off-loads intensive mobile computation to clouds located at the edges of cellular networks. Thereby, MECO is envisioned as a promising technique for prolonging the battery lives and enhancing the computation capacities of mobiles. In this paper, we study resource allocation for a multiuser MECO system based on time-division multiple access (TDMA) and orthogonal frequency-division multiple access (OFDMA). First, for the TDMA MECO system with infinite or finite cloud computation capacity, the optimal resource allocation is formulated as a convex optimization problem for minimizing the weighted sum mobile energy consumption under the constraint on computation latency. The optimal policy is proved to have a threshold-based structure with respect to a derived offloading priority function , which yields priorities for users according to their channel gains and local computing energy consumption. As a result, users with priorities above and below a given threshold perform complete and minimum offloading, respectively. Moreover, for the cloud with finite capacity, a sub-optimal resource-allocation algorithm is proposed to reduce the computation complexity for computing the threshold. Next, we consider the OFDMA MECO system, for which the optimal resource allocation is formulated as a mixed-integer problem. To solve this challenging problem and characterize its policy structure, a low-complexity sub-optimal algorithm is proposed by transforming the OFDMA problem to its TDMA counterpart. The corresponding resource allocation is derived by defining an average offloading priority function and shown to have close-to-optimal performance in simulation.

1,180 citations


Journal ArticleDOI
TL;DR: In this article, the optimal 3D trajectory of each UAV is obtained in a way that the total energy used for the mobility of the UAVs is minimized while serving the ground IoT devices.
Abstract: In this paper, the efficient deployment and mobility of multiple unmanned aerial vehicles (UAVs), used as aerial base stations to collect data from ground Internet of Things (IoT) devices, are investigated. In particular, to enable reliable uplink communications for the IoT devices with a minimum total transmit power, a novel framework is proposed for jointly optimizing the 3D placement and the mobility of the UAVs, device-UAV association, and uplink power control. First, given the locations of active IoT devices at each time instant, the optimal UAVs’ locations and associations are determined. Next, to dynamically serve the IoT devices in a time-varying network, the optimal mobility patterns of the UAVs are analyzed. To this end, based on the activation process of the IoT devices, the time instances at which the UAVs must update their locations are derived. Moreover, the optimal 3D trajectory of each UAV is obtained in a way that the total energy used for the mobility of the UAVs is minimized while serving the IoT devices. Simulation results show that, using the proposed approach, the total-transmit power of the IoT devices is reduced by 45% compared with a case, in which stationary aerial base stations are deployed. In addition, the proposed approach can yield a maximum of 28% enhanced system reliability compared with the stationary case. The results also reveal an inherent tradeoff between the number of update times, the mobility of the UAVs, and the transmit power of the IoT devices. In essence, a higher number of updates can lead to lower transmit powers for the IoT devices at the cost of an increased mobility for the UAVs.

775 citations


Journal ArticleDOI
TL;DR: This work forms the computation offloading decision, resource allocation and content caching strategy as an optimization problem, considering the total revenue of the network, and develops an alternating direction method of multipliers-based algorithm to solve the optimization problem.
Abstract: Mobile edge computing has risen as a promising technology for augmenting the computational capabilities of mobile devices Meanwhile, in-network caching has become a natural trend of the solution of handling exponentially increasing Internet traffic The important issues in these two networking paradigms are computation offloading and content caching strategies, respectively In order to jointly tackle these issues in wireless cellular networks with mobile edge computing, we formulate the computation offloading decision, resource allocation and content caching strategy as an optimization problem, considering the total revenue of the network Furthermore, we transform the original problem into a convex problem and then decompose it in order to solve it in a distributed and efficient way Finally, with recent advances in distributed convex optimization, we develop an alternating direction method of multipliers-based algorithm to solve the optimization problem The effectiveness of the proposed scheme is demonstrated by simulation results with different system parameters

611 citations


Journal ArticleDOI
TL;DR: This paper develops an online joint radio and computational resource management algorithm for multi-user MEC systems, with the objective of minimizing the long-term average weighted sum power consumption of the mobile devices and the MEC server, subject to a task buffer stability constraint.
Abstract: Mobile-edge computing (MEC) has recently emerged as a prominent technology to liberate mobile devices from computationally intensive workloads, by offloading them to the proximate MEC server. To make offloading effective, the radio and computational resources need to be dynamically managed, to cope with the time-varying computation demands and wireless fading channels. In this paper, we develop an online joint radio and computational resource management algorithm for multi-user MEC systems, with the objective of minimizing the long-term average weighted sum power consumption of the mobile devices and the MEC server, subject to a task buffer stability constraint. Specifically, at each time slot, the optimal CPU-cycle frequencies of the mobile devices are obtained in closed forms, and the optimal transmit power and bandwidth allocation for computation offloading are determined with the Gauss-Seidel method ; while for the MEC server, both the optimal frequencies of the CPU cores and the optimal MEC server scheduling decision are derived in closed forms. Besides, a delay-improved mechanism is proposed to reduce the execution delay. Rigorous performance analysis is conducted for the proposed algorithm and its delay-improved version, indicating that the weighted sum power consumption and execution delay obey an $\left [{O\left ({1 / V}\right), O\left ({V}\right) }\right ]$ tradeoff with $V$ as a control parameter. Simulation results are provided to validate the theoretical analysis and demonstrate the impacts of various parameters.

576 citations


Journal ArticleDOI
TL;DR: Cell-free Massive MIMO is shown to provide five- to ten-fold improvement in 95%-likely per-user throughput over small-cell operation and a near-optimal power control algorithm is developed that is considerably simpler than exact max–min power control.
Abstract: Cell-free Massive multiple-input multiple-output (MIMO) comprises a large number of distributed low-cost low-power single antenna access points (APs) connected to a network controller. The number of AP antennas is significantly larger than the number of users. The system is not partitioned into cells and each user is served by all APs simultaneously. The simplest linear precoding schemes are conjugate beamforming and zero-forcing. Max–min power control provides equal throughput to all users and is considered in this paper. Surprisingly, under max–min power control, most APs are found to transmit at less than full power. The zero-forcing precoder significantly outperforms conjugate beamforming. For zero-forcing, a near-optimal power control algorithm is developed that is considerably simpler than exact max–min power control. An alternative to cell-free systems is small-cell operation in which each user is served by only one AP for which power optimization algorithms are also developed. Cell-free Massive MIMO is shown to provide five- to ten-fold improvement in 95%-likely per-user throughput over small-cell operation.

561 citations


Journal ArticleDOI
TL;DR: In this paper, the authors investigated the physical layer security of NOMA in large-scale networks with invoking stochastic geometry and derived new exact expressions of the security outage probability for both single-antenna and multipleantenna aided transmission scenarios.
Abstract: This paper investigates the physical layer security of non-orthogonal multiple access (NOMA) in large-scale networks with invoking stochastic geometry. Both single-antenna and multiple-antenna aided transmission scenarios are considered, where the base station (BS) communicates with randomly distributed NOMA users. In the single-antenna scenario, we adopt a protected zone around the BS to establish an eavesdropper-exclusion area with the aid of careful channel ordering of the NOMA users. In the multiple-antenna scenario, artificial noise is generated at the BS for further improving the security of a beamforming-aided system. In order to characterize the secrecy performance, we derive new exact expressions of the security outage probability for both single-antenna and multiple-antenna aided scenarios. For the single-antenna scenario, we perform secrecy diversity order analysis of the selected user pair. The analytical results derived demonstrate that the secrecy diversity order is determined by the specific user having the worse channel condition among the selected user pair. For the multiple-antenna scenario, we derive the asymptotic secrecy outage probability, when the number of transmit antennas tends to infinity. Monte Carlo simulations are provided for verifying the analytical results derived and to show that: 1) the security performance of the NOMA networks can be improved by invoking the protected zone and by generating artificial noise at the BS and 2) the asymptotic secrecy outage probability is close to the exact secrecy outage probability.

493 citations


Journal ArticleDOI
TL;DR: It is illustrated that, for the 1-bit quantized case, pilot-based channel estimation together with maximal-ratio combing, or zero-forcing detection enables reliable multi-user communication with high-order constellations, in spite of the severe nonlinearity introduced by the ADCs.
Abstract: We investigate the uplink throughput achievable by a multiple-user (MU) massive multiple-input multiple-output (MIMO) system, in which the base station is equipped with a large number of low-resolution analog-to-digital converters (ADCs). Our focus is on the case where neither the transmitter nor the receiver have any a priori channel state information. This implies that the fading realizations have to be learned through pilot transmission followed by channel estimation at the receiver, based on coarsely quantized observations. We propose a novel channel estimator, based on Bussgang’s decomposition, and a novel approximation to the rate achievable with finite-resolution ADCs, both for the case of finite-cardinality constellations and of Gaussian inputs, that is accurate for a broad range of system parameters. Through numerical results, we illustrate that, for the 1-bit quantized case, pilot-based channel estimation together with maximal-ratio combing, or zero-forcing detection enables reliable multi-user communication with high-order constellations, in spite of the severe nonlinearity introduced by the ADCs. Furthermore, we show that the rate achievable in the infinite-resolution (no quantization) case can be approached using ADCs with only a few bits of resolution. We finally investigate the robustness of low-ADC-resolution MU-MIMO uplink against receive power imbalances between the different users, caused for example by imperfect power control.

372 citations


Journal ArticleDOI
TL;DR: A closed-form solution for fully connected OFDM-based hybrid analog/digital precoding is developed for frequency selective mmWave systems and the results indicate that the developed dynamic subarray solution outperforms the fixed hybrid subarray structures in various system and channel conditions.
Abstract: Hybrid analog/digital precoding architectures can address the tradeoff between achievable spectral efficiency and power consumption in large-scale MIMO systems. This makes them a promising candidate for millimeter wave systems, which deploy large antenna arrays at both the transmitter and the receiver to guarantee sufficient received signal power. Most prior work on hybrid precoding focused on narrowband channels and assumed fully connected hybrid architectures. Millimeter wave (mmWave) systems, though, are expected to be wideband with frequency selectivity. In this paper, a closed-form solution for fully connected OFDM-based hybrid analog/digital precoding is developed for frequency selective mmWave systems. This solution is then extended to partially connected but fixed architectures in which each RF chain is connected to a specific subset of the antennas. The derived solutions give insights into how the hybrid subarray structures should be designed. Based on this, a novel technique that dynamically constructs the hybrid subarrays knowing the long-term channel characteristics is developed. Simulation results show that the proposed hybrid precoding solutions achieve spectral efficiencies close to that obtained with fully digital architectures in wideband mmWave channels. Furthermore, the results indicate that the developed dynamic subarray solution outperforms the fixed hybrid subarray structures in various system and channel conditions.

371 citations


Journal ArticleDOI
TL;DR: An analysis of the spectral efficiency of single-carrier and orthogonal-frequency-division-multiplexing (OFDM) transmission in massive MIMO systems that use one-bit ADCs is presented and it is concluded that wideband massive M IMO systems work well with one- bit ADCs.
Abstract: Analog-to-digital converters (ADCs) stand for a significant part of the total power consumption in a massive multiple-input multiple-output (MIMO) base station. One-bit ADCs are one way to reduce power consumption. This paper presents an analysis of the spectral efficiency of single-carrier and orthogonal-frequency-division-multiplexing (OFDM) transmission in massive MIMO systems that use one-bit ADCs. A closed-form achievable rate, i.e., a lower bound on capacity, is derived for a wideband system with a large number of channel taps that employ low-complexity linear channel estimation and symbol detection. Quantization results in two types of error in the symbol detection. The circularly symmetric error becomes Gaussian in massive MIMO and vanishes as the number of antennas grows. The amplitude distortion, which severely degrades the performance of OFDM, is caused by variations between symbol durations in received interference energy. As the number of channel taps grows, the amplitude distortion vanishes and OFDM has the same performance as single-carrier transmission. A main conclusion of this paper is that wideband massive MIMO systems work well with one-bit ADCs.

Journal ArticleDOI
TL;DR: In this paper, the authors considered a cluster-centric small cell network with combined design of cooperative caching and transmission policy, where small base stations (SBSs) are grouped into disjoint clusters, in which in-cluster cache space is utilized as an entity.
Abstract: Wireless content caching in small cell networks (SCNs) has recently been considered as an efficient way to reduce the data traffic and the energy consumption of the backhaul in emerging heterogeneous cellular networks. In this paper, we consider a cluster-centric SCN with combined design of cooperative caching and transmission policy. Small base stations (SBSs) are grouped into disjoint clusters, in which in-cluster cache space is utilized as an entity. We propose a combined caching scheme, where part of the cache space in each cluster is reserved for caching the most popular content in every SBS, while the remaining is used for cooperatively caching different partitions of the less popular content in different SBSs, as a means to increase local content diversity. Depending on the availability and placement of the requested content, coordinated multi-point technique with either joint transmission or parallel transmission is used to deliver content to the served user. Using Poisson point process for the SBS location distribution and a hexagonal grid model for the clusters, we provide analytical results on the successful content delivery probability of both transmission schemes for a user located at the cluster center. Our analysis shows an inherent tradeoff between transmission diversity and content diversity in our cooperation design. We also study the optimal cache space assignment for two objective functions: maximization of the cache service performance and the energy efficiency. Simulation results show that the proposed scheme achieves performance gain by leveraging cache-level and signal-level cooperation and adapting to the network environment and user quality-of-service requirements.

Journal ArticleDOI
TL;DR: In this paper, a novel framework for optimizing the performance of such UAV-based wireless systems in terms of the average number of bits (data service) transmitted to users as well as the UAVs' hover duration (i.e. flight time) is proposed.
Abstract: In this paper, the effective use of flight-time constrained unmanned aerial vehicles (UAVs) as flying base stations that provide wireless service to ground users is investigated. In particular, a novel framework for optimizing the performance of such UAV-based wireless systems in terms of the average number of bits (data service) transmitted to users as well as the UAVs’ hover duration (i.e. flight time) is proposed. In the considered model, UAVs hover over a given geographical area to serve ground users that are distributed within the area based on an arbitrary spatial distribution function. In this case, two practical scenarios are considered. In the first scenario, based on the maximum possible hover times of UAVs, the average data service delivered to the users under a fair resource allocation scheme is maximized by finding the optimal cell partitions associated to the UAVs. Using the powerful mathematical framework of optimal transport theory, this cell partitioning problem is proved to be equivalent to a convex optimization problem. Subsequently, a gradient-based algorithm is proposed for optimally partitioning the geographical area based on the users’ distribution, hover times, and locations of the UAVs. In the second scenario, given the load requirements of ground users, the minimum average hover time that the UAVs need for completely servicing their ground users is derived. To this end, first, an optimal bandwidth allocation scheme for serving the users is proposed. Then, given this optimal bandwidth allocation, optimal cell partitions associated with the UAVs are derived by exploiting the optimal transport theory. Simulation results show that our proposed cell partitioning approach leads to a significantly higher fairness among the users compared with the classical weighted Voronoi diagram. Furthermore, the results demonstrate that the average hover time of the UAVs can be reduced by 64% by adopting the proposed optimal bandwidth allocation scheme as well as the optimal cell partitioning approach. In addition, our results reveal an inherent tradeoff between the hover time of UAVs and bandwidth efficiency while serving the ground users.

Journal ArticleDOI
TL;DR: It is established that Alice can remain covert with a transmit power that does not decrease with $n$ even when Willie employs an optimal detector.
Abstract: Recent work has established that when transmitter Alice wishes to communicate reliably to recipient Bob without detection by warden Willie, with additive white Gaussian noise (AWGN) channels between all parties, communication is limited to $\mathcal {O}(\sqrt {n})$ bits in $n$ channel uses. However, this assumes that Willie has an accurate statistical characterization of the channel. When Willie has uncertainty about such and his receiver is limited to a threshold test on the received power, Alice can transmit covertly with a power that does not decrease with $n$ , thus conveying $\mathcal {O}(n)$ bits covertly and reliably in $n$ uses of an AWGN channel. Here, we consider covert communication of $\mathcal {O}(n)$ bits in $n$ channel uses while generalizing the environment and removing any restrictions on Willie’s receiver. We assume that an uninformed “jammer” is present to help Alice, and we consider AWGN and block fading channels. In some scenarios, Willie’s optimal detector is a threshold test on the received power. When the channel between the jammer and Willie has multiple fading blocks per codeword, a threshold test on the received power is not optimal. However, we establish that Alice can remain covert with a transmit power that does not decrease with $n$ even when Willie employs an optimal detector.

Journal ArticleDOI
TL;DR: A practical transmission model for an ambient backscatter system, where a tag wishes to send some low-rate messages to a reader with the help of an ambient RF signal source, and then provide fundamental studies of noncoherent symbol detection when all channel state information of the system is unknown is formulated.
Abstract: Ambient backscatter, an emerging communication mechanism where battery-free devices communicate with each other via backscattering ambient radio frequency (RF) signals, has achieved much attention recently because of its desirable application prospects in the Internet of Things. In this paper, we formulate a practical transmission model for an ambient backscatter system, where a tag wishes to send some low-rate messages to a reader with the help of an ambient RF signal source, and then provide fundamental studies of noncoherent symbol detection when all channel state information of the system is unknown. For the first time, a maximum likelihood detector is derived based on the joint probability density function of received signal vectors. In order to ease availability of prior knowledge of the ambient RF signal and reduce computational complexity of the algorithm, we design a joint-energy detector and derive its corresponding detection threshold. The analytical bit error rate (BER) and BER-based outage probability are also obtained in a closed form, which helps with designing system parameters. An estimation method to obtain detection-required parameters and comparison of computational complexity of the detectors are presented as complementary discussions. Simulation results are provided to corroborate theoretical studies.

Journal ArticleDOI
TL;DR: Analytical results demonstrate that the two power allocation policies realize different tradeoffs between the reception reliability, user fairness and system complexity, although all of them realize the same diversity gain.
Abstract: In this paper, a cooperative non-orthogonal multiple access (NOMA) network is considered, where a source communicates with two users through an energy harvesting relay. The impact of two types of NOMA power allocation policies, namely NOMA with fixed power allocation (F-NOMA) and cognitive radio inspired NOMA (CR-NOMA), on the considered cooperative simultaneous wireless information and power transfer (SWIPT) system is investigated. In particular, closed-form expressions for the outage probability and their high SNR approximations are derived to characterize the performance of SWIPT-F-NOMA and SWIPT-CR-NOMA. These developed analytical results demonstrate that the two power allocation policies realize different tradeoffs between the reception reliability, user fairness and system complexity. Compared with the conventional SWIPT relaying networks with orthogonal multiple access (OMA), the proposed NOMA schemes can effectively reduce the outage probability, although all of them realize the same diversity gain.

Journal ArticleDOI
TL;DR: The design of multi-resolution beamforming sequences to enable the system to quickly search out the dominant channel direction for single-path channels are considered, which generates a multilevel beamforming sequence that strikes a balance between minimizing the training overhead and maximizing beamforming gain.
Abstract: Millimeter wave (mm-wave) communication is expected to be widely deployed in fifth generation (5G) wireless networks due to the substantial bandwidth available for licensed and unlicensed use at mm-wave frequencies. To overcome the higher path loss observed at mm-wave bands, most prior work focused on the design of directional beamforming using analog and/or hybrid beamforming techniques in large-scale multiple-input multiple-output systems. Obtaining potential gains from highly directional beamforming in practical systems hinges on sufficient levels of channel estimation accuracy, where the problem of channel estimation becomes more challenging due to the substantial training overhead needed to sound all directions using a high-resolution narrow beam. In this paper, we consider the design of multi-resolution beamforming sequences to enable the system to quickly search out the dominant channel direction for single-path channels. The resulting design generates a multilevel beamforming sequence that strikes a balance between minimizing the training overhead and maximizing beamforming gain, where a subset of multilevel beamforming vectors is chosen adaptively to maximize the average data rate within a constrained time. We propose an efficient method to design a hierarchical multi-resolution codebook utilizing a Butler matrix, i.e., a generalized discrete Fourier transform matrix. Numerical results show the effectiveness of the proposed algorithm.

Journal ArticleDOI
TL;DR: In this article, a generalized hybrid architecture with a small number of radio frequency (RF) chains with full-resolution ADCs, or low-resolution ADC with a number of RF chains equal to the number of antennas is proposed.
Abstract: Hybrid analog/digital architectures and receivers with low-resolution analog-to-digital converters (ADCs) are two low power solutions for wireless systems with large antenna arrays, such as millimeter wave and massive multiple-input multiple-output systems. Most prior work represents two extreme cases in which either a small number of radio frequency (RF) chains with full-resolution ADCs, or low-resolution ADC with a number of RF chains equal to the number of antennas is assumed. In this paper, a generalized hybrid architecture with a small number of RF chains and a finite number of ADC bits is proposed. For this architecture, achievable rates with channel inversion and singular value decomposition-based transmission methods are derived. Results show that the achievable rate is comparable to that obtained by full-precision ADC receivers at low and medium SNRs. A trade-off between the achievable rate and power consumption for the different numbers of bits and RF chains is devised. This enables us to draw some conclusions on the number of ADC bits needed to maximize the system energy efficiency. Numerical simulations show that coarse ADC quantization is optimal under various system configurations. This means that hybrid combining with coarse quantization achieves better energy-rate trade-off compared with both hybrid combining with full-resolutions ADCs and 1-bit ADC combining.

Journal ArticleDOI
TL;DR: This paper explores the rate-energy (R-E) region of simultaneous wireless information and power transfer for MIMO broadcasting channel under the nonlinear radio frequency energy harvesting (EH) model to characterize the tradeoff between the maximal energy transfer versus information rate.
Abstract: This paper explores the rate-energy (R-E) region of simultaneous wireless information and power transfer for MIMO broadcasting channel under the nonlinear radio frequency energy harvesting (EH) model. The goal is to characterize the tradeoff between the maximal energy transfer versus information rate. The separated EH and information decoding (ID) receivers and the co-located EH and ID receivers scenarios are considered. For the co-located receivers scenario, both time switching (TS) and power splitting (PS) receiver architectures are investigated. Optimization problems are formulated to derive the boundaries of the R-E region s for the considered systems. As the problems are nonconvex, we first transform them into equivalent ones and derive some semi-closed-form solutions, and then design efficient algorithms to solve them. Numerical results are provided to show the R-E region s of the systems, which provide some interesting insights. It is shown that all practical circuit specifications greatly affect the system R-E region. Compared with the systems under traditional linear EH model, the ones under the nonlinear EH model achieve smaller R-E region s due to the limitations of practical circuit features and also show very different R-E tradeoff behaviors.

Journal ArticleDOI
TL;DR: The system model based on OAM-MDM is mathematically analyzed and it is theoretically concluded that such system architecture can bring a vast reduction in receiver complexity without capacity penalty compared with conventional line-of-sight multiple-in-multiple-out systems under the same physical constraint.
Abstract: Mode division multiplexing (MDM) using orbital angular momentum (OAM) is a recently developed physical layer transmission technique, which has obtained intensive interest among optics, millimeter-wave, and radio frequency due to its capability to enhance communication capacity while retaining an ultra-low receiver complexity. In this paper, the system model based on OAM-MDM is mathematically analyzed and it is theoretically concluded that such system architecture can bring a vast reduction in receiver complexity without capacity penalty compared with conventional line-of-sight multiple-in-multiple-out systems under the same physical constraint. Furthermore, a $4\times 4$ OAM-MDM communication experiment adopting a pair of easily realized Cassegrain reflector antennas capable of multiplexing/demultiplexing four orthogonal OAM modes of $l = {-3}$ , −2, +2, and +3 is carried out at a microwave frequency of 10 GHz. The experimental results show high spectral efficiency as well as low receiver complexity.

Journal ArticleDOI
TL;DR: It is shown that the optimal robust secure beamforming can be achieved under the bounded CSI error model, whereas a suboptimal beamforming solution can be obtained under the probabilistic CSI error models.
Abstract: A multiple-input single-output cognitive radio downlink network is studied with simultaneous wireless information and power transfer. In this network, a secondary user coexists with multiple primary users and multiple energy harvesting receivers. In order to guarantee secure communication and energy harvesting, the problem of robust secure artificial noise-aided beamforming and power splitting design is investigated under imperfect channel state information (CSI). Specifically, the transmit power minimization problem and the max–min fairness energy harvesting problem are formulated for both the bounded CSI error model and the probabilistic CSI error model. These problems are non-convex and challenging to solve. A 1-D search algorithm is proposed to solve these problems based on ${\mathcal S}\text {-Procedure} $ under the bounded CSI error model and based on Bernstein-type inequalities under the probabilistic CSI error model. It is shown that the optimal robust secure beamforming can be achieved under the bounded CSI error model, whereas a suboptimal beamforming solution can be obtained under the probabilistic CSI error model. A tradeoff is elucidated between the secrecy rate of the secondary user receiver and the energy harvested by the energy harvesting receivers under a max–min fairness criterion.

Journal ArticleDOI
TL;DR: A WP-BackCom network is modeled as a random Poisson cluster process in the horizontal plane where PBs are Poisson distributed and active ad hoc pairs of backscatter communication nodes with fixed separation distances form random clusters centered at PBs.
Abstract: Future Internet-of-Things (IoT) will connect billions of small computing devices embedded in the environment and support their device-to-device (D2D) communication. Powering the massive number of embedded devices is a key challenge of designing IoT, since batteries increase the devices’ form factors and battery recharging/replacement is difficult. To tackle this challenge, we propose a novel network architecture that enables D2D communication between passive nodes by integrating wireless power transfer and backscatter communication, which is called a wirelessly powered backscatter communication (WP-BackCom) network. In this network, standalone power beacons (PBs) are deployed for wirelessly powering nodes by beaming unmodulated carrier signals to targeted nodes. Provisioned with a backscatter antenna, a node transmits data to an intended receiver by modulating and reflecting a fraction of a carrier signal. Such transmission by backscatter consumes orders-of-magnitude less power than a traditional radio. Thereby, the dense deployment of low-complexity PBs with high transmission power can power a large-scale IoT. In this paper, a WP-BackCom network is modeled as a random Poisson cluster process in the horizontal plane where PBs are Poisson distributed and active ad hoc pairs of backscatter communication nodes with fixed separation distances form random clusters centered at PBs. The backscatter nodes can harvest energy from and backscatter carrier signals transmitted by PBs. Furthermore, the transmission power of each node depends on the distance from the associated PB. Applying stochastic geometry, the network coverage probability and transmission capacity are derived and optimized as functions of backscatter parameters, including backscatter duty cycle, reflection coefficient, and the PB density. The effects of the parameters on network performance are quantified.

Journal ArticleDOI
TL;DR: In this article, the authors proposed a context-aware proactive caching algorithm, which learns context-specific content popularity online by regularly observing context information of connected users, updating the cache content and observing cache hits subsequently.
Abstract: Content caching in small base stations or wireless infostations is considered to be a suitable approach to improve the efficiency in wireless content delivery. Placing the optimal content into local caches is crucial due to storage limitations, but it requires knowledge about the content popularity distribution, which is often not available in advance. Moreover, local content popularity is subject to fluctuations, since mobile users with different interests connect to the caching entity over time. Which content a user prefers may depend on the user’s context. In this paper, we propose a novel algorithm for context-aware proactive caching. The algorithm learns context-specific content popularity online by regularly observing context information of connected users, updating the cache content and observing cache hits subsequently. We derive a sublinear regret bound, which characterizes the learning speed and proves that our algorithm converges to the optimal cache content placement strategy in terms of maximizing the number of cache hits. Furthermore, our algorithm supports service differentiation by allowing operators of caching entities to prioritize customer groups. Our numerical results confirm that our algorithm outperforms state-of-the-art algorithms in a real world data set, with an increase in the number of cache hits of at least 14%.

Journal ArticleDOI
TL;DR: This paper study the systems operating in the EHF/THF bands by explicitly capturing three phenomena inherent for these frequencies: high directivity of the transmit and receive antennas; 2) molecular absorption; and 3) blocking of high-frequency radiation.
Abstract: The fifth generation wireless systems are expected to rely on a large number of small cells to massively offload traffic from the cellular and even from the wireless local area networks. To enable this functionality, mm-wave (EHF) and Terahertz (THF) bands are being actively explored. These bands are characterized by unique propagation properties compared with microwave systems. As a result, the interference structure in these systems could be principally different to what we observed so far at lower frequencies. In this paper, using the tools of stochastic geometry, we study the systems operating in the EHF/THF bands by explicitly capturing three phenomena inherent for these frequencies: 1) high directivity of the transmit and receive antennas; 2) molecular absorption; and 3) blocking of high-frequency radiation. We also define and compare two different antenna radiation pattern models. The metrics of interest are the mean interference and the signal-to-interference-plus-noise (SINR) ratio at the receiver. Our results reveal that: 1) for the same total emitted energy by a Poisson field of interferers, both the interference and SINR significantly increase when simultaneously both transmit and receive antennas are directive and 2) blocking has a profound impact on the interference and SINR creating much more favorable conditions for communications compared with no blocking case.

Journal ArticleDOI
TL;DR: In this article, a blind algorithm is proposed to estimate the effective channel gain at each user, that does not require any downlink pilots, for the massive MIMO downlink with zero-forcing processing and time division duplex operation.
Abstract: We consider the Massive Multiple-Input Multiple-Output downlink with maximum-ratio and zero-forcing processing and time-division duplex operation. To decode, the users must know their instantaneous effective channel gain. Conventionally, it is assumed that by virtue of channel hardening, this instantaneous gain is close to its average and hence that users can rely on knowledge of that average (also known as statistical channel information). However, in some propagation environments, such as keyhole channels, channel hardening does not hold. We propose a blind algorithm to estimate the effective channel gain at each user, that does not require any downlink pilots. We derive a capacity lower bound of each user for our proposed scheme, applicable to any propagation channel. Compared with the case of no downlink pilots (relying on channel hardening), and compared with training-based estimation using downlink pilots, our blind algorithm performs significantly better. The difference is especially pronounced in environments that do not offer channel hardening.

Journal ArticleDOI
TL;DR: In this article, a support detection (SD)-based channel estimation scheme was proposed to estimate the support of sparse beamspace channel with comparable or higher accuracy than conventional schemes, and the performance and complexity analyses were provided to prove that the proposed SD-based channel estimator can estimate the SBS with comparable performance and low pilot overhead.
Abstract: Millimeter-wave (mm-wave) massive MIMO with lens antenna array can considerably reduce the number of required radio-frequency (RF) chains by beam selection. However, beam selection requires the base station to acquire the accurate information of beamspace channel. This is a challenging task as the size of beamspace channel is large, while the number of RF chains is limited. In this paper, we investigate the beamspace channel estimation problem in mm-wave massive MIMO systems with lens antenna array. Specifically, we first design an adaptive selecting network for mm-wave massive MIMO systems with lens antenna array, and based on this network, we further formulate the beamspace channel estimation problem as a sparse signal recovery problem. Then, by fully utilizing the structural characteristics of the mm-wave beamspace channel, we propose a support detection (SD)-based channel estimation scheme with reliable performance and low pilot overhead. Finally, the performance and complexity analyses are provided to prove that the proposed SD-based channel estimation scheme can estimate the support of sparse beamspace channel with comparable or higher accuracy than conventional schemes. Simulation results verify that the proposed SD-based channel estimation scheme outperforms conventional schemes and enjoys satisfying accuracy even in the low SNR region as the structural characteristics of beamspace channel can be exploited.

Journal ArticleDOI
TL;DR: In this article, an extended Kalman filter (EKF)-based solution is proposed for computationally efficient joint estimation and tracking of the time of arrival (ToA) and direction of arrival of the user nodes (UNs) using uplink reference signals.
Abstract: In this paper, we address the prospects and key enabling technologies for highly efficient and accurate device positioning and tracking in fifth generation (5G) radio access networks. Building on the premises of ultra-dense networks as well as on the adoption of multicarrier waveforms and antenna arrays in the access nodes (ANs), we first formulate extended Kalman filter (EKF)-based solutions for computationally efficient joint estimation and tracking of the time of arrival (ToA) and direction of arrival (DoA) of the user nodes (UNs) using uplink reference signals. Then, a second EKF stage is proposed in order to fuse the individual DoA and ToA estimates from one or several ANs into a UN position estimate. Since all the processing takes place at the network side, the computing complexity and energy consumption at the UN side are kept to a minimum. The cascaded EKFs proposed in this article also take into account the unavoidable relative clock offsets between UNs and ANs, such that reliable clock synchronization of the access-link is obtained as a valuable by-product. The proposed cascaded EKF scheme is then revised and extended to more general and challenging scenarios where not only the UNs have clock offsets against the network time, but also the ANs themselves are not mutually synchronized in time. Finally, comprehensive performance evaluations of the proposed solutions on a realistic 5G network setup, building on the METIS project based outdoor Madrid map model together with complete ray tracing based propagation modeling, are provided. The obtained results clearly demonstrate that by using the developed methods, sub-meter scale positioning and tracking accuracy of moving devices is indeed technically feasible in future 5G radio access networks operating at sub-6 GHz frequencies, despite the realistic assumptions related to clock offsets and potentially even under unsynchronized network elements.

Journal ArticleDOI
TL;DR: This paper proposes an angle domain hybrid precoding and channel tracking method by exploring the spatial features of the mm-wave massive MIMO channel and results are provided to corroborate the studies.
Abstract: The millimeter-wave (mm-wave) massive multiple-input multiple-output (MIMO) system has gained much attention for its considerable improvement in system throughput. However, the cost of complex hardware, e.g., radio frequency (RF) chains, hinders it from practical deployment. In this paper, we propose an angle domain hybrid precoding and channel tracking method by exploring the spatial features of the mm-wave massive MIMO channel. The number of the effective spatial beams, or equivalently the RF chains, is enormously decreased via the operation of spatial rotation . The users are then scheduled by the angle division multiple access scheme, which groups users according to their direction of arrivals (DOAs). Meanwhile, a channel tracking method is designed for the subsequent data transmission through a small number of pilot symbols. Specifically, the channel information is divided into the DOA information and the gain information, where the DOA information is tracked by a modified unscented Kalman filter and the gain information is estimated from beam training. Numerical results are provided to corroborate our studies.

Journal ArticleDOI
TL;DR: The proposed OFDM-HIQ-IM and LP-OFDM-IQ-IM schemes, as revealed by both theoretical analyses and computer simulations, enable low-complexity detection and exhibit superior error rate performance over the existing OFDM -IM schemes.
Abstract: Index modulation concept has attracted considerable research interest in the past few years As a realization of index modulation in the frequency domain, orthogonal frequency division multiplexing with index modulation (OFDM-IM) has recently been proposed, which conveys information bits through both the subcarrier activation patterns and the amplitude phase modulation constellation points This paper proposes two enhanced OFDM-IM schemes aimed at achieving higher spectral efficiency and diversity gain, respectively The first one, termed OFDM with hybrid in-phase/quadrature index modulation (OFDM-HIQ-IM), explores the I- and Q- dimensions jointly for index modulation, allowing transmission of more index modulation bits in each subcarrier group The second one, termed linear constellation precoded OFDM-IQ-IM (LP-OFDM-IQ-IM), spreads information symbols across two adjacent active subcarriers through linear constellation precoding to harvest additional diversity gain By maximizing the minimum squared Euclidean distance, two different realizations of LP-OFDM-IQ-IM are derived, which leads to a rotated and a diamond-shaped constellation, respectively The proposed OFDM-HIQ-IM and LP-OFDM-IQ-IM, as revealed by both theoretical analyses and computer simulations, enable low-complexity detection and exhibit superior error rate performance over the existing OFDM-IM schemes

Journal ArticleDOI
TL;DR: In this paper, the authors jointly optimize the precoding matrices and the set of active remote radio heads (RRHs) to minimize the network power consumption for a user-centric cloud radio access network.
Abstract: This paper jointly optimizes the precoding matrices and the set of active remote radio heads (RRHs) to minimize the network power consumption for a user-centric cloud radio access network, where both the RRHs and users have multiple antennas and each user is served by its nearby RRHs. Both users’ rate requirements and per-RRH power constraints are considered. Due to these conflicting constraints, this optimization problem may be infeasible. In this paper, we propose to solve this problem in two stages. In Stage I, a low-complexity user selection algorithm is proposed to find the largest subset of feasible users. In Stage II, a low-complexity algorithm is proposed to solve the optimization problem with the users selected from Stage I. Specifically, the re-weighted $l_{1}$ -norm minimization method is used to transform the original problem with non-smooth objective function into a series of weighted power minimization (WPM) problems, each of which can be solved by the weighted minimum mean square error (WMMSE) method. The solution obtained by the WMMSE method is proved to satisfy the Karush-Kuhn-Tucker conditions of the WPM problem. Moreover, a low-complexity algorithm based on Newton’s method and the gradient descent method is developed to update the precoder matrices in each iteration of the WMMSE method. Simulation results demonstrate the rapid convergence of the proposed algorithms and the benefits of equipping multiple antennas at the user side. Moreover, the proposed algorithm is shown to achieve near-optimal performance in terms of NPC.