scispace - formally typeset
Open AccessJournal ArticleDOI

Reliable Beamspace Channel Estimation for Millimeter-Wave Massive MIMO Systems with Lens Antenna Array

TLDR
In this article, a support detection (SD)-based channel estimation scheme was proposed to estimate the support of sparse beamspace channel with comparable or higher accuracy than conventional schemes, and the performance and complexity analyses were provided to prove that the proposed SD-based channel estimator can estimate the SBS with comparable performance and low pilot overhead.
Abstract
Millimeter-wave (mm-wave) massive MIMO with lens antenna array can considerably reduce the number of required radio-frequency (RF) chains by beam selection. However, beam selection requires the base station to acquire the accurate information of beamspace channel. This is a challenging task as the size of beamspace channel is large, while the number of RF chains is limited. In this paper, we investigate the beamspace channel estimation problem in mm-wave massive MIMO systems with lens antenna array. Specifically, we first design an adaptive selecting network for mm-wave massive MIMO systems with lens antenna array, and based on this network, we further formulate the beamspace channel estimation problem as a sparse signal recovery problem. Then, by fully utilizing the structural characteristics of the mm-wave beamspace channel, we propose a support detection (SD)-based channel estimation scheme with reliable performance and low pilot overhead. Finally, the performance and complexity analyses are provided to prove that the proposed SD-based channel estimation scheme can estimate the support of sparse beamspace channel with comparable or higher accuracy than conventional schemes. Simulation results verify that the proposed SD-based channel estimation scheme outperforms conventional schemes and enjoys satisfying accuracy even in the low SNR region as the structural characteristics of beamspace channel can be exploited.

read more

Citations
More filters
Journal ArticleDOI

Millimeter Wave Communications for Future Mobile Networks

TL;DR: A comprehensive survey of mmWave communications for future mobile networks (5G and beyond) is presented, including an overview of the solution for multiple access and backhauling, followed by the analysis of coverage and connectivity.
Journal ArticleDOI

Deep Learning-Based Channel Estimation for Beamspace mmWave Massive MIMO Systems

TL;DR: The learned denoising-based approximate message passing (LDAMP) network is exploited and significantly outperforms state-of-the-art compressed sensing-based algorithms even when the receiver is equipped with a small number of RF chains.
Journal ArticleDOI

Channel Estimation for Orthogonal Time Frequency Space (OTFS) Massive MIMO

TL;DR: A 3D-structured orthogonal matching pursuit algorithm based channel estimation technique to solve the downlink channel estimation problem for OTFS massive MIMO.
Posted Content

Prospective Multiple Antenna Technologies for Beyond 5G

TL;DR: Three new multiple antenna technologies that can play key roles in beyond 5G networks: cell-free massive MIMO, beamspace massive M IMO, and intelligent reflecting surfaces are surveyed.
Journal ArticleDOI

Multibeam 3-D-Printed Luneburg Lens Fed by Magnetoelectric Dipole Antennas for Millimeter-Wave MIMO Applications

TL;DR: In this article, a 3D-printed Luneburg lens with a simplified geometry is presented, where rod-type structures are employed as the unit cell of the gradient-index material to realize the required permittivity distribution in the lens.
References
More filters
Journal ArticleDOI

Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit

TL;DR: It is demonstrated theoretically and empirically that a greedy algorithm called orthogonal matching pursuit (OMP) can reliably recover a signal with m nonzero entries in dimension d given O(m ln d) random linear measurements of that signal.
Book

Fundamentals of Wireless Communication

TL;DR: In this paper, the authors propose a multiuser communication architecture for point-to-point wireless networks with additive Gaussian noise detection and estimation in the context of MIMO networks.
Journal ArticleDOI

Scaling Up MIMO: Opportunities and Challenges with Very Large Arrays

TL;DR: The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time.
Journal ArticleDOI

Spatially Sparse Precoding in Millimeter Wave MIMO Systems

TL;DR: This paper considers transmit precoding and receiver combining in mmWave systems with large antenna arrays and develops algorithms that accurately approximate optimal unconstrained precoders and combiners such that they can be implemented in low-cost RF hardware.
Journal ArticleDOI

Scaling up MIMO: Opportunities and Challenges with Very Large Arrays

TL;DR: Very large MIMO as mentioned in this paper is a new research field both in communication theory, propagation, and electronics and represents a paradigm shift in the way of thinking both with regards to theory, systems and implementation.
Related Papers (5)