scispace - formally typeset
Search or ask a question

Showing papers in "Inorganic Chemistry in 2021"


Journal ArticleDOI
TL;DR: In this article, a 3D metal-organic framework with micropores and free NH2 groups was proposed to promote the chemical fixation of CO2 to cyclic carbonates.
Abstract: Carbon dioxide (CO2) fixation to generate chemicals and fuels is of high current importance, especially toward finding mild and efficient strategies for catalytic CO2 transformation to value added products. Herein, we report a novel Lewis acid-base bifunctional amine-functionalized dysprosium(III) metal-organic framework [Dy3(data)3·2DMF]·DMF (2,5-data: 2,5-diamino-terephthalate), NH2-TMU-73. This compound was fully characterized and its crystal structure reveals a 3D metal-organic framework (MOF) with micropores and free NH2 groups capable of promoting the chemical fixation of CO2 to cyclic carbonates. NH2-TMU-73 is built from the Dy(III) centers and data2- blocks, which are arranged into an intricate underlying net with a rare type of xah topology. After activation, NH2-TMU-73 and its terephthalate-based analogue (TMU-73) were applied for CO2-to-epoxide coupling reactions to produce cyclic carbonates. Important features of this catalytic process concern high efficiency and activity in the absence of cocatalyst, use of solvent-free medium, atmospheric CO2 pressure, and ambient temperature conditions. Also, NH2-TMU-73 features high structural stability and can be recycled and reused in subsequent catalytic tests. An important role of free amino groups and open metal sites in the MOF catalyst was highlighted when suggesting a possible reaction mechanism.

84 citations


Journal ArticleDOI
TL;DR: In this paper, a novel nanocage-based N-rich LMOF (LCU-103) has been constructed and characterized, which contains abundant N functional sites anchoring on both the windows of nanocages and the inner channels of the framework that can interact with metal ions.
Abstract: Luminescent metal-organic frameworks (LMOFs) as sensors showing highly efficient detection toward toxic heavy-metal ions are in high demand for human health and environmental protection. A novel nanocage-based N-rich LMOF (LCU-103) has been constructed and characterized. It is a 2-fold interpenetrating structure built from N-rich {Zn6(dttz)4} nanocages extended by N-donor ligand Hdpa [H3dttz = 4,5-di(1H-tetrazol-5-yl)-2H-1,2,3-triazole; Hdpa = 4,4'-dipyridylamine]. Notably, LCU-103 contains abundant N functional sites anchoring on both the windows of nanocages and the inner channels of the framework that can interact with metal ions and then recognize them. As a result, it can serve as a luminescent sensing material for detecting trace amounts of Fe3+ and Cu2+ ions with low limits of detection (LODs) of 1.45 and 1.66 μM, respectively, through a luminescent quenching mechanism. Meanwhile, LCU-103 as a LMOF sensor exhibits several advantages such as high sensitivity, appropriate selectivity (for Fe3+ in H2O), recycling stability, and fast response times in N,N-dimethylformamide. Moreover, LCU-103 also displays good luminescent quenching activity toward Fe3+ in H2O and a simulated 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid biological system with low LODs of 1.51 and 1.52 μM, respectively. LCU-103 test papers were further prepared to offer easy and real-time detection of Fe3+ and Cu2+ ions. Importantly, when density functional theory calculations and multiple experimental evidence, including X-ray photoelectron spectroscopy, UV-vis absorption, luminescence decay lifetimes, and quantum efficiencies, are combined, a preferred N-donor site and possible weak interaction sensing mechanism is also proposed to elucidate the quenching effect.

82 citations


Journal ArticleDOI
TL;DR: In this article, a new metal-organic framework (MOF), [Zn4(μ4-O)(μ6-L)2(H2O)2]n·nDMF (ZSTU-10), was assembled from zinc(II) nitrate and N,N',N''-bis(4-carboxylate)trimesicamide linkers and fully characterized.
Abstract: A new metal-organic framework (MOF), [Zn4(μ4-O)(μ6-L)2(H2O)2]n·nDMF (ZSTU-10), was assembled from zinc(II) nitrate and N,N',N″-bis(4-carboxylate)trimesicamide linkers and fully characterized. Its crystal structure discloses an intricate two-fold 3D+3D interpenetrated MOF driven by the [Zn4(μ4-O)]-based tetragonal secondary building units and the C3-symmetric tris-amide-tricarboxylate linkers (μ6-L3-). Topological analysis of ZSTU-10 reveals two interpenetrated 3,6-connected nets with an rtl (rutile) topology. Z-Scan analysis at 532 nm was conducted to study a nonlinear optical (NLO) behavior of ZSTU-10. The nonlinear responses of ZSTU-10 were explored under various laser intensities, revealing notable third-order NLO properties in the visible region. A large two-photon absorption at lower incident intensities highlights the fact that ZSTU-10 can be applied in optical limiting devices as well as optical modulators. Moreover, a nonlinear refractive index (n2) is indicative of a self-defocusing behavior. This work thus expands a family of novel MOF materials with remarkable optical properties.

79 citations


Journal ArticleDOI
TL;DR: In this paper, NiFe layered double hydroxide was in situ grown hydrothermally on a 3D graphite felt (NiFe LDH/GF) as a high efficiency catalyst in facilitating the oxygen evolution reaction (OER).
Abstract: It is of great importance to rationally design and develop earth-abundant nanocatalysts for high-efficiency water electrolysis. Herein, NiFe layered double hydroxide was in situ grown hydrothermally on a 3D graphite felt (NiFe LDH/GF) as a high-efficiency catalyst in facilitating the oxygen evolution reaction (OER). In 1.0 M KOH, NiFe LDH/GF requires a low overpotential of 214 mV to deliver a geometric current density of 50 mA cm-2 (η50 mA cm-2 = 214 mV), surpassing that NiFe LDH supported on a 2D graphite paper (NiFe LDH/GP; η50 mA cm-2 = 301 mV). More importantly, NiFe LDH/GF shows good durability at 50 mA cm-2 within 50 h of OER catalysis testing and delivers a faradaic efficiency of nearly 100% in the electrocatalysis of OER.

77 citations


Journal ArticleDOI
TL;DR: The relationship between the aggregation states of pyrene-based linkers and the photoluminescence/photoelectric performance was well studied by the formation of an anionic metal-organic framework, [BMI]2[Mg3(TBAPy)2(H2O)4]·2dioxane, which shows highly enhanced light-harvesting and photoelectric conversion efficiency by the encapsulation of D-π-A cation dyes as discussed by the authors.
Abstract: The relationship between the aggregation states of pyrene-based linkers and the photoluminescence/photoelectric performance was well studied by the formation of an anionic metal-organic framework, [BMI]2[Mg3(TBAPy)2(H2O)4]·2dioxane, which shows highly enhanced light-harvesting and photoelectric conversion efficiency by the encapsulation of D-π-A cation dyes.

65 citations


Journal ArticleDOI
TL;DR: The production of hydrogen by water electrolysis is an environment-friendly method and comparatively greener than other methods of hydrogen production such as stream reforming carbon, hydrolysis of met... as discussed by the authors.
Abstract: Production of hydrogen by water electrolysis is an environment-friendly method and comparatively greener than other methods of hydrogen production such as stream reforming carbon, hydrolysis of met...

64 citations


Journal ArticleDOI
Zhen-Zhen Xue1, Xiang-Dong Meng1, Xin-Yu Li1, Song-De Han1, Jie Pan1, Guo-Ming Wang1 
TL;DR: In this article, a dia-type metal-organic hybrid network based on the [Ag4Br6] clusters and hexamethylenetetetramine molecules was presented.
Abstract: Herein, we report a dia-type metal–organic hybrid network based on the [Ag4Br6] clusters and hexamethylenetetramine molecules wherein both the inorganic nodes and organic linkers feature adamantane...

60 citations


Journal ArticleDOI
TL;DR: In this article, a highly selective and sensitive fluorescent turn-on sensor using a porphyrinic MOF, Tb-TCPP, is presented, which displays a 10-fold fluorescence enhancement in the presence of Al3+, Cr3+, and Fe3+ ions.
Abstract: The development of porphyrin-based metal-organic frameworks (MOFs) has attracted significant interest in the scientific community in recent years because of their versatile applications particularly in optical and electronic fields. In this study, a highly selective and sensitive fluorescent turn-on sensor using a porphyrinic MOF, Tb-TCPP, is presented, which displays a 10-fold fluorescence enhancement in the presence of Al3+, Cr3+, and Fe3+ ions. The detection limit is in the nM region. For the Al3+ ion, it could be visually detected at concentrations as low as 5 mM within 15 min. Tb-TCPP could also be used as an indicator for acidic or alkaline solutions at pH values of >9 and <3. The studies on the detection mechanism illustrate that cation exchange proceed between Tb-TCPP and these M3+ ions, and consequently, energy transfer from TCPP to Tb3+ is suppressed and π*-π energy transfer of the porphyrin ligand is significantly enhanced.

57 citations


Journal ArticleDOI
TL;DR: In this article, a porous Zn-based MOF, [Zn(OBA)2(L1)·2DMA]n, with mixed nodes under solvothermal conditions, was designed and fabricated, and the pore size was calculated from N2 adsorption isotherms by using a density functional theory model.
Abstract: Metal-organic frameworks (MOFs) and MOF-based composites as luminescent sensors with excellent economic practicability and handy operability have attracted much attention. Herein, we designed and fabricated a porous Zn-based MOF, [Zn(OBA)2(L1)·2DMA]n [1; H2OBA = 4,4'-oxybis(benzoic acid), L1 = 2,4,6-tris(4-pyridyl)pyridine, and DMA = N,N-dimethylacetamide], with mixed nodes under solvothermal conditions, and the pore size of 5.9 A was calculated from N2 adsorption isotherms by using a density functional theory model. The as-synthesized compound 1 is stable in different boiling organic solvents and water solutions with a wide pH range of 2-12 and exhibits intense luminescence emission at 360 nm under excitation of 290 nm. Significantly, compound 1 shows high selective detection of Fe3+, CrO42-, and Cr2O72- in aqueous solution even under the interference of other ions. Compound 1 can quickly sense these ions in a short time and has a striking sensitivity toward Fe3+ with an ultralow limit of detection (LOD) of 1.06 μM. The relatively low LODs for CrO42- and Cr2O72- are 3.87 and 2.37 μM, respectively, compared to the reported works. Meanwhile, compound 1 can be reused to detect Fe3+, CrO42-, and Cr2O72- six times by simple regeneration. Considering the practicability, a mixed-matrix membrane (MMM) incorporated compound 1 and poly(methyl methacrylate) has been constructed. This MMM displays quick detection of Fe3+, CrO42-, and Cr2O72- and prompt regeneration by lifting from the analyte. This useful MMM shows a comparable LOD below 4.35 μM for these ions. This work presents a cost-effective Zn-based MOF as a functional platform for simple but useful sensing of Fe3+, CrO42-, and Cr2O72- in aqueous solution.

52 citations


Journal ArticleDOI
TL;DR: In this paper, a series of 2D/2D exfoliated boron nitride/exfoliated g-C3N4 nanocomposites denoted as e-BN/e-CN have been successfully prepared using a simple in situ technique.
Abstract: A series of 2D/2D exfoliated boron nitride/exfoliated g-C3N4 nanocomposites denoted as e-BN/e-CN have been successfully prepared using a simple in situ technique. The successful deposition of e-BN on e-CN was confirmed from high-resolution transmission electron microscopy analysis. According to electrochemical measurements, 1.5 wt % e-BN/e-CN nanocomposites showed 1.5 times more photocurrent than e-CN, which indicates the successful formation of an e-BN/e-CN heterostructure. The photocatalytic activities of the e-CN and e-BN/e-CN composites were investigated through photocatalytic tetracycline hydrochloride (TCH) degradation and H2 evolution under visible light illumination. The 1.5 wt % e-BN/e-CN composite demonstrated the highest photocatalytic activities, which are about 21 and 1.5 fold greater than e-CN towards H2 generation with an apparent conversion efficiency of 2.34% and TCH degradation, respectively. The improved photocatalytic activities of e-BN/e-CN photocatalysts were ascribed to the augmented light-harvesting ability and enhanced separation efficiency of charge carriers. Lower photoluminescence intensity and a smaller arc value in the impedance spectra again proved the reduced recombination of the e--h+ pairs in the e-BN/e-CN nanocomposites. Trapping experiments show that •O2-, h+, and •OH radicals are the predominant reactive species that accelerated the photocatalytic activities of e-BN/e-CN composites. This study opens up a new window towards the fabrication of such 2D/2D nanocomposites in the field of photocatalysis.

51 citations


Journal ArticleDOI
TL;DR: In this article, a new series of hybrid NU@ZIS nanocomposites, which comprise a p-n heterojunction of 3D Zr(IV) metal-organic framework nanorods (NU-1000) and photoactive ZnIn2S4 (ZIS) nanostars, were reported to have an ultrahigh catalytic performance and recycling capability in a quick visible-light-induced degradation of the tetracycline antibiotic in water under sonophotocatalytic conditions.
Abstract: The universal pollution of diverse water bodies and declined water quality represent very important environmental problems. The development of new and efficient photocatalytic water treatment systems based on the Z-scheme mechanisms can contribute to tackling such problems. This study reports the preparation, full characterization, and detailed sonophotocatalytic activity of a new series of hybrid NU@ZIS nanocomposites, which comprise a p-n heterojunction of 3D Zr(IV) metal-organic framework nanorods (NU-1000) and photoactive ZnIn2S4 (ZIS) nanostars. Among the obtained materials with varying content of ZIS (5, 10, 20, and 30%) on the surface of NU-1000, the NU@ZIS20 nanocomposite revealed an ultrahigh catalytic performance and recyclability in a quick visible-light-induced degradation of the tetracycline antibiotic in water under sonophotocatalytic conditions. Moreover, increased activity of NU@ZIS20 can be ascribed to the formation of a p-n heterojunction between NU-1000 and ZIS, and a synergistic effect of these components, leading to a high level of radical production, facilitating a Z-scheme charge carrier transfer and reducing the recombination of charge carriers. The radical trapping tests revealed that •OH, •O2-, and h+ are the major active species in the sonophotocatalytic degradation of tetracycline. Possible mechanism and mineralization pathways were introduced. Cytotoxicity of NU@ZIS20 and aquatic toxicity of water samples after tetracycline degradation were also assessed, showing good biocompatibility of the catalyst and efficacy of sonophotocatalytic protocols to produce water that does not affect the growth of bacteria. Finally, the obtained nanocomposites and developed photocatalytic processes can represent an interesting approach toward diverse environmental applications in water remediation and the elimination of other types of organic pollutants.

Journal ArticleDOI
TL;DR: Two mesoporous anionic metal-organic frameworks, namely, JOU-11 and Jou-12, have been synthesized by using wheel-type [In6(OX)6(COO)12]6- as building blocks and show isoreticular three-dimensional frameworks with pyr topology.
Abstract: Anionic metal-organic frameworks (MOFs) have attracted increasing attention due to the enhanced electrostatic interactions between their anionic frameworks and counter-ionic guests. Owing to these special host-guest interactions, anionic MOFs are beginning to have a large impact in the field of absorption and separation of ionic molecules and selective sensing of metal ions. Herein, two mesoporous anionic metal-organic frameworks, namely, [(CH3)2NH2]6[In6(OX)6(TCA)4]·solvents (JOU-11) and [(CH3)2NH2]6[In6(OX)6(TCPA)4]·solvents (JOU-12) (H3TCA = tricarboxytriphenylamine; H3TCPA = tris((4-carboxyl)phenylduryl)amine; OX = oxalate), have been synthesized by using wheel-type [In6(OX)6(COO)12]6- as building blocks. Structural analyses show that JOU-11 and JOU-12 show isoreticular three-dimensional frameworks with pyr topology. Due to their anionic frameworks and tunable pore window sizes, both compounds can be exploited for absorbing and separating cationic organic dyes. In addition, JOU-11 can be developed as a fluorescence "turn-off" sensor for selectively sensing Fe3+, whereas JOU-12 can be used for fluorescence "turn-on" sensing of Cu2+ and Co2+ ions.

Journal ArticleDOI
TL;DR: Novel water-stable Tb3+@MOF-808 has been synthesized using a coordinated postsynthetic modification strategy and designed as a convenient and efficient fluorescence probe, which exhibits a remarkable fluorescence quenching effect with the successive addition of BR and displays fascinating features, such as fast response time, high sensitivity, and excellent selectivity.
Abstract: Abnormal bilirubin (BR) level is a sign of several fatal diseases, so it is of great significance and challenge to develop a facile and effective family routine strategy for BR sensing. Herein, nov...

Journal ArticleDOI
TL;DR: In this paper, an ultralow Ru-doped NiCo-MOF hollow porous nanospheres (denoted as Ru@NiCo-MoF HPNs) has been reported.
Abstract: Developing high-performance and cost-efficient catalysts toward oxygen evolution reaction (OER) is an important but daunting task due to the sluggish kinetics hindered by the four-electron transfer process. Herein, an advanced class of ultralow Ru-doped NiCo-MOF hollow porous nanospheres (denoted as Ru@NiCo-MOF HPNs) has been reported in this work. Benefiting from the high porosity and large surface area of the metal-organic frameworks (MOFs) and optimized electronic properties by Ru doping, the as-prepared Ru@NiCo-MOF HPNs exhibit superior performance for water oxidation with the overpotential of only 284 mV to reach a current density of 10 mA·cm-2 in alkaline electrolyte, as well as a small Tafel slope of 78.8 mV·dec-1, outperforming the NiCo-MOF HPNs (358 mV) and commercial RuO2 catalyst (326 mV). The incorporation of Ru in NiCo-MOF HPNs enables a stable OER activity for at least 39 h. Moreover, we have probed the interaction between the content of Ru and OER performance, impressively, Ru@NiCo-MOF HPNs with 13.5 atom % Ru doping (denoted as Ru@NiCo-MOF-4) exhibited the highest OER activity with the excellent mass activity of 310 mA·mg-1 at an overpotential of 284 mV. Besides, a two-electrode cell with Ru@NiCo-MOF-4 as the anode and commercial Pt/C catalyst as the cathode also demonstrated outstanding electrocatalytic overall water splitting performance with a cell potential of merely 1.57 V to deliver a current density of 10 mA·cm-2.

Journal ArticleDOI
TL;DR: In this paper, a luminescent Eu-MOF with unique 2D (4-c) {44.62}-connected topology was presented for detecting fluoroquinolone antibiotic residues.
Abstract: Fluoroquinolone antibiotic (FQ) residues, such as ciprofloxacin (CIP) and ofloxacin (OFLX), have aroused public concerns owing to their serious impact in environmental water or food fields which influence human health. A facile and high-performance sensory method for detecting FQs is highly desirable for practical requirements. Herein, we have presented a luminescent Eu-MOF with unique 2D (4-c) {44.62}-connected topology, which holds the outstanding fluorescent property and excellent chemical stability in aqueous solution for 15 days. Thus, Eu-MOF can be considered as a highly sensitive chemo-sensor for sensing CIP and OFLX with different fluorescent color conversion (red changes to green for OFLX and to blue for CIP) and a low detection limit of 0.693 and 0.802 ppb, respectively. Furthermore, the mechanism of sensing CIP and OFLX was exposed to the photoinduced electron transfer (PET) and dynamic quenching process, as evaluated by DFT calculations and fluorescence lifetime decay measurements. Our work first reports a simple and efficient strategy for recognizing CIP and OFLX with a special luminescence color-change phenomenon based on MOF materials, serving as a meaningful guide for researchers in beneficial applications.

Journal ArticleDOI
TL;DR: In this article, two novel 3D Cd(II)-MOFs, [Cd3·L·(BTB)2·2DMF] and Cd3O2·L ·BTC] were synthesized by solvothermal conditions.
Abstract: Here, two novel 3D Cd(II)-MOFs, [Cd3·L·(BTB)2·2DMF] and [(Cd3O2)·L·BTC] (denoted as CUST-532 and CUST-533, L = 9,10-bis(N-benzimidazolyl)-anthracene, BTB = 1,3,5-tris(4-carboxyphenyl) benzene, BTC = 1,3,5-benzenetricarboxylic acid, CUST = Changchun University of Science and Technology), were synthesized by solvothermal conditions. Both CUST-532 and CUST-533 are 3D (3,8)-c topological nets with the same point symbol of {43}2{46·618·84}. PXRD and TGA analyses prove that CUST-532 and CUST-533 have good structural stability and thermal stability. On the basis of the high fluorescence characteristics, the results of fluorescence sensing experiments show that CUST-532 and CUST-533 can be used as multifunctional chemical sensors to achieve rapid fluorescence quenching response to antibiotic residues, Fe3+ and Cr2O72- ions at a much lower concentration. Furthermore, the possible mechanisms of fluorescence quenching in the sensing process were systematically studied by PXRD, UV-vis, fluorescence decay lifetime, and density functional theory.

Journal ArticleDOI
TL;DR: In this paper, the synthesis of the lanthanum vanadate/hexagonal boron nitride (LaV/h-BN) composite for the electrochemical determination of carbendazim (CZ) was reported.
Abstract: In the field of agriculture fungicides are vital, providing the most important ecosystem service for food production. The widespread use of these chemicals can significantly lead to various ecotoxicological threats with adverse effects, such as environmental changes, microbial resistance, and phytotoxicity. Electrochemical sensors offer enormous potential for the identification and monitoring of hazardous substances in accordance with their constructive characteristics, namely, precision, accuracy, sensitivity, and selectivity, over traditional analytical techniques. Here, we thus report the synthesis of the lanthanum vanadate/hexagonal boron nitride (LaV/h-BN) composite for the electrochemical determination of carbendazim (CZ), which is a widely used fungicide for disease management with critical risks associated with its overexposure. The combination of LaV and h-BN accelerates the formation of active sites, facilitating faster charge transfer and higher electronic conductivity. The synergistic effects greatly improve the preference of the modified electrode with increased sensitivity, a lower limit of detection, and wide linear responses toward CZ detection. The existence of variable oxidation states in the orthovanadate together with the unique properties of h-BN mark LaV/h-BN as an advanced material for specific applications in the family of rare-earth metal orthovanadate. Also, the deep eutectic solvent-assisted synthesis of the material creates an environmentally efficient system with reduced energy requisites to allow for applications in effective environmental monitoring.

Journal ArticleDOI
TL;DR: In this paper, a multiresponsive luminescent sensor for detecting trace nitroaromatic compounds (NACs) with the limits of detection (LOD) of 7.21 × 10-8, 1.85 × 10 -5, and 1.13 × 10 −7 mol/L, respectively.
Abstract: The elaborately designed π-electron-rich fluorescent ligand 1,4-bis(1-carboxymethylene-4-imidazolyl)benzene (H2L), possessing bifunctional groups including the carboxylate groups (building units) and 4-imidazoyl groups (N-donor potential active sites) has been employed to construct fluorescent coordination polymers. A luminescent sensor, namely [Cd(L)(phen)2]·5H2O (1), was obtained, which has a one-dimensional structure. The fluorescent material shows a blue emission maximum at 457 nm with a luminescence lifetime of 488 ns and a quantum yield (QY) of 4.56%. Significantly, 1 serves as a promising multiresponsive luminescent sensor to detect trace nitroaromatic compounds (NACs) with the limits of detection (LOD) of 7.21 × 10-8, 1.85 × 10-5, and 1.15 × 10-5 mol/L for 2-nitrophenol (2-NP), 3-nitrophenol (3-NP), and 4-nitrophenol (4-NP), respectively. Furthermore, CP 1 exhibits fluorescent turn-off and turn-on sensing behavior for Fe3+ and Al3+ metal ions with trace amounts of 1.05 × 10-7 and 1.13 × 10-7 mol/L, respectively. Experimental methods and theoretical calculations were employed to elucidate the sensing mechanism in detail.

Journal ArticleDOI
TL;DR: An electrocatalyst with superb hydrophilicity, high conductivity, and a kinetically beneficial structure using Ni2P/MXene over a 3D Ni foam (NF) for the alkaline hydrogen evolution reaction (HER) based on the laboratory and computational research works is designed.
Abstract: Developing highly efficient non-precious electrocatalytic materials for H2 production in an alkaline medium is attractive on the front of green energy production. Herein, we successfully designed an electrocatalyst with superb hydrophilicity, high conductivity, and a kinetically beneficial structure using Ni2P/MXene over a 3D Ni foam (NF) for the alkaline hydrogen evolution reaction (HER) based on the laboratory and computational research works. The designed self-supported and highly effective electrocatalyst achieves a huge boost in the HER activity compared with that of pristine Ni2P nanosheets owing to the distinctive structure and synergy of coupling Ti3C2Tx and Ni2P. More specifically, Ni2P/Ti3C2Tx/NF produces an electric current density of 10 mA·cm-2 under a low overpotential (135 mV) and shows excellent durability under alkaline (1 M KOH) conditions, and the observed performance degradation is negligible. The outstanding HER activity makes the synthetic strategy of Ni2P/Ti3C2Tx/NF a potential approach to be extended to other transition-metal-based electrocatalysts for enhanced catalytic performance.

Journal ArticleDOI
TL;DR: In this article, a fabrication method for ZIF-67 (zeolite imidazolate framework) nanofibers (NFs) via the wet chemical combined electrospinning (ES) approach was ascertained.
Abstract: The explorations of earth-abundant, noble metal-free, highly efficient electrocatalysts for water-splitting reactions have been considered as highly significant for imperishable energy production. Though the metal organic framework (MOF)-based materials are highly promising candidates in the area of material chemistry, the combined properties associated with MOFs and the one-dimensional (1D) fibrous matrix, which can lead to better electrocatalytic performance, have been less explored. Herein, we ascertain a fabrication method for ZIF-67 (zeolite imidazolate framework) nanofibers (NFs), Fe-ZIF NFs, and Fe-ZIF-67 NFs via the wet chemical combined electrospinning (ES) approach. The as-synthesized catalysts were utilized for the electrochemical reaction, which showed a high efficiency toward the oxygen evolution reaction (OER). Compared to other catalysts, the Fe-ZIF-67 NF catalyst showed a very less overpotential of 278 mV at a fixed current density of 10 mA cm-2. The obtained Tafel slope and Rct values are 77 mV dec-1 and 1.2 Ω, respectively. The post-X-ray photoelectron spectroscopy (XPS) analysis revealed the transformation of FeOOH during the OER study along with Co3+ states in mixed Fe-ZIF-67 NFs. In an alkaline electrolyzer, Fe-ZIF-67 NFs were utilized as the anode and a Pt wire as the cathode in 1 M KOH solution, which required a cell voltage of 1.68 V at 10 mA cm-2 current density with astonishing stability. Hence, this work should open a new path for the exploration of efficient non-noble metal catalysts for energy-related applications.

Journal ArticleDOI
TL;DR: In this paper, a zero-dimensional hybrid organic-inorganic halide, RInBr4, featuring photoemissive trimethyl(4-stilbenyl)methylammonium (R+) cations and nonemissively InBr4- tetrahedral anions, was reported.
Abstract: Low-dimensional hybrid organic-inorganic metal halides have received increased attention because of their outstanding optical and electronic properties. However, the most studied hybrid compounds contain lead and have long-term stability issues, which must be addressed for their use in practical applications. Here, we report a new zero-dimensional hybrid organic-inorganic halide, RInBr4, featuring photoemissive trimethyl(4-stilbenyl)methylammonium (R+) cations and nonemissive InBr4- tetrahedral anions. The crystal structure of RInBr4 is composed of alternating layers of inorganic anions and organic cations along the crystallographic a axis. The resultant hybrid demonstrates bright-blue emission with Commission Internationale de l'Eclairage color coordinates of (0.19, 0.20) and a high photoluminescence quantum yield (PLQY) of 16.36% at room temperature, a 2-fold increase compared to the PLQY of 8.15% measured for the precursor organic salt RBr. On the basis of our optical spectroscopy and computational work, the organic component is responsible for the observed blue emission of the hybrid material. In addition to the enhanced light emission efficiency, the novel hybrid indium bromide demonstrates significantly improved environmental stability. These findings may pave the way for the consideration of hybrid organic In(III) halides for light emission applications.

Journal ArticleDOI
TL;DR: In this article, a series of porphyrin-based zirconium MOFs (PCN-H2/Ptx:y, where x:y = 4:1, 3:2, 2:3, and 0:1) containing different ratios of H2TCPP and PtIITCPP [TCPP = tetrakis(4-carboxyphenyl)porphyrinate] as isostructural ligands and Zr6 clusters as nodes.
Abstract: Metal-organic frameworks (MOFs) are important photocatalytic materials for H2 production. To clarify the structure-function relationship and improve the photocatalytic activity, herein we explored a series of porphyrin-based zirconium MOFs (PCN-H2/Ptx:y, where x:y = 4:1, 3:2, 2:3, and 0:1) containing different ratios of H2TCPP and PtIITCPP [TCPP = tetrakis(4-carboxyphenyl)porphyrinate] as isostructural ligands and Zr6 clusters as nodes. Under visible-light irradiation, PCN-H2/Pt0:1 shows the highest average H2 evolution reaction rate (351.08 μmol h-1 g-1), which decreases along with lowering of the ratio of PtIITCPP in the PCN-H2/Ptx:y series. The differences in photocatalytic activity are attributed to more uniformly dispersed Pt2+ ions in PCN-H2/Pt0:1, which promotes charge transfer from porphyrins (photosensitizers) to PtII ions (catalytic centers), leading to efficient charge separation in the MOF materials. The bifunctional MOFs with photosensitizers and catalytic centers provide new insight for the design and application of porphyrin-based photocatalytic systems for visible-light-driven H2 production.

Journal ArticleDOI
Mingyuan Lei1, Fa-Yuan Ge1, Xiang-Jing Gao1, Zhiqiang Shi, He-Gen Zheng1 
TL;DR: In this paper, a 3D porous Tb(III)-based metal-organic framework (MOF) was synthesized using a urea-functionalized tetracarboxylate ligand.
Abstract: The design and development of self-calibrating ratiometric luminescent sensors for the fast, accurate, and sensitive discrimination and determination of pollutants in wastewater is highly desirable for public and environmental health. Herein, a 3D porous Tb(III)-based metal-organic framework (MOF), {[Tb(HL)(H2O)2]·x(solv)}n (1), was facilely synthesized using a urea-functionalized tetracarboxylate ligand, 5,5'-(((1,4-phenylenebis(azanediyl))bis(carbonyl))bis(azanediyl))diisophthalic acid (H4L). The activated framework showed a good water stability in both aqueous solutions at a wide pH range of 2-14 and simulated antibiotic wastewaters. Interestingly, this Tb-MOF exhibited dual luminescence owing to the partial energy transfer from the antenna H4L to Tb3+. More importantly, activated 1 (1a) that was dispersed in water showed a fast, accurate, and highly sensitive discrimination ability toward antibiotics with a good recyclability, discriminating three different classes of antibiotics from each other via the quenching or enhancement of the luminescence and tuning the emission intensity ratio between the H4L ligand and the Tb3+ center for the first time. Simultaneously, 1a is a ratiometric luminescent sensor for the rapid, accurate, and quantitative discrimination of D2O from H2O. Furthermore, this complex was successfully used for the effective determination of antibiotics and D2O in real water samples. This work indicates that 1a represents the first ever MOF material for the discriminative sensing of antibiotics and D2O in H2O and promotes the practical application of Ln-MOF-based ratiometric luminescent sensors in monitoring water quality and avoiding any major leak situation.

Journal ArticleDOI
TL;DR: In this article, the adsorption energies of metal-encapsulated B12N12 nanocages were analyzed using density functional theory (DFT) and time-dependent DFT at B3LYP/6-31G(d,p) and CAM-B3lyP/ 6-311+G(p) levels of theory for all the studied systems.
Abstract: The increasing demand for energy storage materials has gained considerable attention of scientific community toward the development of hydrogen storage materials Hydrogen has become more important, as it not only works efficiently in different processes but is also used as an alternative energy resource whenever it is combined with a cell technology like fuel cell Herein, efforts are being made to develop efficient hydrogen storage materials based on alkaline earth metal (beryllium, magnesium, and calcium)-encapsulated B12N12 nanocages Quantum chemical calculations were performed using density functional theory (DFT) and time-dependent DFT at B3LYP/6-31G(d,p) and CAM-B3LYP/6-311+G(d,p) levels of theory for all the studied systems The adsorption energies of Be-B12N12, Mg-B12N12, and Ca-B12N12 systems suggested that Mg and Ca are not fitted accurately in the cavity of nanocages because of their large size However, H2 adsorbed efficiently on the metal-encapsulated systems with high adsorption energy values Furthermore, dipole moment and QNBO (Charges-Natural Bond Orbital) calculations suggested that a greater charge separation is seen in H2-adsorbed metal-encapsulated systems The molecular electrostatic potential analysis also unveiled the different charge sites in the studied systems and also demonstrated the charge separation upon hydrogen adsorption on metal-encapsulated systems Partial density of states analysis was performed in the support of frontier molecular orbital distribution that indicates the narrow highest occupied molecular orbital-lowest unoccupied molecular orbital energy gap in hydrogen-adsorbed metal-encapsulated systems Results of all analyses and global descriptions of reactivity suggested that the designed H2-adsorbed metal-encapsulated B12N12 systems are efficient systems for designing future hydrogen storage materials Thus, these novel kinds of systems for efficient hydrogen storage purposes have been recommended

Journal ArticleDOI
TL;DR: In this article, two 3D fluorescent metal-organic frameworks (MOFs), [Cd(L)(bbibp)]n (1) and [Cc(L) 0.5]n (2), where H2L = 4,4'-(4,4)-bipyridine-2,6-diyl)dibenzoic acid and bbibp = 4.4'-bis(benzoimidaz-1-yl)biphenyl, were acquired through a conventional method and characterized via IR spect
Abstract: Two novel 3D fluorescent metal-organic frameworks (MOFs), [Cd(L)(bbibp)]n (1) and [Cd(L)(bbibp)0.5]n (2), where H2L = 4,4'-(4,4'-bipyridine-2,6-diyl)dibenzoic acid and bbibp = 4,4'-bis(benzoimidaz-1-yl)biphenyl, were acquired through a conventional method and characterized via IR spectra, single-crystal X-ray diffraction, elemental analysis, thermogravimetric analysis, powder X-ray diffraction (PXRD), scanning electron microscopy, N2 adsorption-desorption isotherms, and X-ray photoelectron spectroscopy (XPS). The crystal framework of Cd-MOF 1 remained stable in the range of pH = 1.0-12.0. Interestingly, the emission peak of 1 showed a red shift and exhibited a fluorescence turn-on effect in an acidic environment. X-ray diffraction measurement revealed that the crystal structure of 1 remained unchanged after immersion in a pH = 1.0 solution. In addition, Cd-MOFs 1 and 2 displayed fluorescent quenching to l-glutamic acid with high sensitivity and selectivity. Meanwhile, 1 showed high selectivity in recognizing Fe3+ under acidic conditions, which made 1 capable of detecting Fe3+ in acidic industrial wastewater. Finally, the fluorescent sensing mechanism was carefully studied by PXRD, transient fluorescence lifetime, XPS, and UV spectroscopy.

Journal ArticleDOI
TL;DR: In this article, a facile approach to synthesize a series of metal-organic frameworks (MOFs) at the micro-/nanoscopic scale will result in new physical properties and novel functions into the materials without changing the chemical identities and the characteristic features of the MOFs themselves.
Abstract: Controlling the growth of metal-organic frameworks (MOFs) at the micro-/nanoscopic scale will result in new physical properties and novel functions into the materials without changing the chemical identities and the characteristic features of the MOFs themselves. Herein, we report a facile approach to synthesize a series of MOFs [Co-MOF, CoxNiy-MOFs (x and y represent the molar ratio of Co2+ and Ni2+ and x/y = 1:1, 1:5, 1:10, 1:15, and 1:20), and Ni-MOF] with a one-dimensional micro-/nanoscaled rod-like architecture. From Co-MOF to CoxNiy-MOFs to Ni-MOF, the diameters of the rods turn to be spindly with the increase of Ni2+ content which will facilitate the supercapacitor performances. Interestingly, Co1Ni20-MOF exhibits a highest specific capacity of 597 F g-1 at 0.5 A g-1 and excellent cycle performance (retained 93.59% after 4000 cycles) among these MOF materials owing to its micro-/nanorod structure with a smaller diameter and the synergy effect between the optimum molar ratio of Co2+ and Ni2+.

Journal ArticleDOI
TL;DR: These results demonstrate that polyoxometalate-based frameworks are suitable sorbents in D-μSPE for molecules containing amine functionalities and could in the future be used to expand and tune their substrate binding behavior.
Abstract: The linkage of molecular components into functional heterogeneous framework materials has revolutionized modern materials chemistry. Here, we use this principle to design polyoxometalate-based frameworks as high affinity adsorbents for drugs of abuse, leading to their application in solid-phase extraction analysis. The frameworks are assembled by the reaction of a Keggin-type polyanion, [SiW12O40]4-, with lanthanoids Dy(III), La(III), Nd(III), and Sm(III) and the multidentate linking ligand 1,10-phenanthroline-2,9-dicarboxylic acid (H2PDA). Their reaction leads to the formation of crystalline 1D coordination polymers. Because of the charge mismatch between the lanthanoids (+3) and the dodecasilicotungstate (-4), we observe incorporation of the PDA2- ligands into crystalline materials, leading to four polyoxometalate-based frameworks where Keggin-type heteropolyanions are linked by cationic {Lnn(PDA)n} groups (Ln = Dy (1), La (2), Nd (3), and Sm (4)). Structural analysis of the polyoxometalate-based frameworks suggested that they might be suitable for surface binding of common drugs of abuse via supramolecular interactions. To this end, they were used for the extraction and quantitative determination of four model drugs of abuse (amphetamine, methamphetamine, codeine, and morphine) by using micro-solid-phase extraction (D-μSPE) and high-performance liquid chromatography (HPLC). The method showed wide linear ranges, low limits of detection (0.1-0.3 ng mL-1), high precision, and satisfactory spiked recoveries. Our results demonstrate that polyoxometalate-based frameworks are suitable sorbents in D-μSPE for molecules containing amine functionalities. The modular design of these networks could in the future be used to expand and tune their substrate binding behavior.

Journal ArticleDOI
TL;DR: In this paper, a site engineering strategy was proposed to concurrently decrease grain size, increase the band-gap, and enhance the relaxor nature in Ta-doped tungsten bronze ceramics (Sr2NaNb5-xTaxO15) for the improvement of the dielectric breakdown strength and the polarization difference.
Abstract: The development of lead-free ceramics with appropriate energy storage properties is essential for the successful practical application of advanced electronic devices. In this study, a site engineering strategy was proposed to concurrently decrease grain size, increase the band-gap, and enhance the relaxor nature in Ta-doped tungsten bronze ceramics (Sr2NaNb5-xTaxO15) for the improvement of the dielectric breakdown strength and the polarization difference. As a result, the ceramic with x = 1.5, that is, Sr2NaNb3.5Ta1.5O15, exhibited superior energy density (∼3.99 J/cm3) and outstanding energy efficiency (∼91.7%) (@380 kV/cm) as well as good thermal stability and remarkable fatigue endurance. In addition, the ceramic demonstrated an ultrashort discharge time (τ0.9 < 57 ns), a high discharge current density (925.8 A/cm2) along with a high power density (78.7 MW/cm3). The energy storage properties in combination with good stability achieved in this work indicate the powerful potential of Sr2NaNb5-xTaxO15 tungsten bronze ceramics for high-performance capacitor applications. This material can be considered as a complement to the widely studied perovskite-based relaxor ceramics and should be further investigated in the future.

Journal ArticleDOI
TL;DR: In this article, a novel lattice-matched CoP/CoS2 heterostructure having a nanosheet morphology was developed as an HER cocatalyst and integrated in situ onto graphitic carbon nitride (g-C3N4) nanosheets via a successive phosphorization and vulcanization route.
Abstract: Transition-metal phosphides and sulfides are considered as promising cocatalysts for the photocatalytic hydrogen evolution reaction (HER), and the cocatalytic effect can be improved by directed heterostructure engineering. In this study, a novel lattice-matched CoP/CoS2 heterostructure having a nanosheet morphology was developed as an HER cocatalyst and integrated in situ onto graphitic carbon nitride (g-C3N4) nanosheets via a successive phosphorization and vulcanization route. First-principles density functional theory calculations evidenced that the construction of the lattice-matched CoP/CoS2 heterostructure resulted in the redistribution of interface electrons, enhanced metallic characteristics, and improved H* adsorption. As a result of these effects, the CoP/CoS2 heterostructure cocatalyst formed a 2D/2D Schottky junction with the g-C3N4 nanosheets, thus promoting photoelectron transfer to CoP/CoS2 and realizing fast charge-carrier separation and good HER activity. As expected, the CoP/CoS2 heterostructure exhibited excellent cocatalytic activity, and the optimal loading of the cocatalyst on g-C3N4 enhanced its HER activity to 3.78 mmol g-1 h-1. This work furnishes a new perspective for the development of highly active noble-metal-free cocatalysts via heterostructure engineering for water splitting applications.

Journal ArticleDOI
TL;DR: In this article, a porphyrin and imidazolium-ionic liquid (IL)-decorated and quinoline-linked covalent organic framework (COF, abbreviated as COF-P1-1) via a three-component one-pot Povarov reaction was constructed.
Abstract: We report the construction of a porphyrin and imidazolium-ionic liquid (IL)-decorated and quinoline-linked covalent organic framework (COF, abbreviated as COF-P1-1) via a three-component one-pot Povarov reaction. After post-synthetic metallization of COF-P1-1 with Co(II) ions, the metallized COF-PI-2 is generated. COF-PI-2 is chemically stable and displays highly selective CO2 adsorption and good visible-light-induced photothermal conversion ability (ΔT = 26 °C). Furthermore, the coexistence of Co(II)-porphyrin and imidazolium-IL within COF-PI-2 has guaranteed its highly efficient activity for CO2 cycloaddition. Of note, the needed thermal energy for the reactions is derived from the photothermal conversion of the Co(II)-porphyrin COF upon visible-light irradiation. More importantly, the CO2 cycloaddition herein is a "window ledge" reaction, and it can proceed smoothly upon natural sunlight irradiation. In addition, a scaled-up CO2 cycloaddition can be readily achieved using a COF-PI-2@chitosan aerogel-based fixed-bed model reactor. Our research provides a new avenue for COF-based greenhouse gas disposal in an eco-friendly and energy- and source-saving way.