scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Applied Toxicology in 2017"


Journal ArticleDOI
TL;DR: The case for inclusion of C. elegans assays in early safety testing and as one component in tiered or integrated toxicity testing strategies is made, but results do not indicate that nematodes alone can replace data from mammals for hazard evaluation.
Abstract: Caenorhabditis elegans is a small nematode that can be maintained at low cost and handled using standard in vitro techniques. Unlike toxicity testing using cell cultures, C. elegans toxicity assays provide data from a whole animal with intact and metabolically active digestive, reproductive, endocrine, sensory and neuromuscular systems. Toxicity ranking screens in C. elegans have repeatedly been shown to be as predictive of rat LD50 ranking as mouse LD50 ranking. Additionally, many instances of conservation of mode of toxic action have been noted between C. elegans and mammals. These consistent correlations make the case for inclusion of C. elegans assays in early safety testing and as one component in tiered or integrated toxicity testing strategies, but do not indicate that nematodes alone can replace data from mammals for hazard evaluation. As with cell cultures, good C. elegans culture practice (GCeCP) is essential for reliable results. This article reviews C. elegans use in various toxicity assays, the C. elegans model's strengths and limitations for use in predictive toxicology, and GCeCP. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. Journal of Applied Toxicology published by John Wiley & Sons Ltd.

323 citations


Journal ArticleDOI
Yi Cao1, Yu Gong1, Liangliang Liu, Yiwei Zhou1, Xin Fang1, Cao Zhang1, Yining Li1, Juan Li1 
TL;DR: It has been suggested that HUVECs could be considered as a relatively reliable and simple in vitro model for ECs to predict and evaluate the toxicity of NPs to endothelium.
Abstract: With the rapid development of nanotechnologies, nanoparticles (NPs) are increasingly produced and used in many commercial products, which could lead to the contact of human blood vessels with NPs. Thus, it is necessary to understand the adverse effects of NPs to relevant cells lining human blood vessels, especially endothelial cells (ECs) that cover the lumen of blood vessels. Human umbilical vein endothelial cells (HUVECs) are among one of the most popular models used for ECs in vitro. In the present review, we discussed studies that have used HUVECs as a model to investigate the EC-NP interactions, the toxic effects of NPs on ECs and the mechanisms. The results of these studies indicated that NPs could be internalized into HUVECs by the endocytosis pathway as well as transported across HUVECs by exocytosis and paracellular pathways. Exposure of HUVECs to NPs could induce cytotoxicity, genotoxicity, eNOS uncoupling and endothelial activation, which could be explained by NP-induced oxidative stress, inflammatory response and dysfunction of organelles. In addition, some studies have also evaluated the influences of microenvironment (e.g. the presence of proteins and excessive nutrients), the physiological and/or pathological stimuli related to the diversity of ECs (e.g. shear stress, cyclic stretch and inflammatory stimuli), and the physicochemical properties of NPs on the responses of ECs to NP exposure. In conclusion, it has been suggested that HUVECs could be considered as a relatively reliable and simple in vitro model for ECs to predict and evaluate the toxicity of NPs to endothelium. Copyright © 2017 John Wiley & Sons, Ltd.

207 citations


Journal ArticleDOI
TL;DR: In this paper, the effects of Nacetylcysteine (NAC) and polymyxin B (PMB) on PM25-induced lung inflammation mechanisms were investigated.
Abstract: Particulate matter 25 (

133 citations


Journal ArticleDOI
TL;DR: Research advances on the health effects of PM with an emphasis on neurotoxicity are highlighted, with the hope of enhancing awareness in the public and calling for prevention and protective measures.
Abstract: Particulate matter (PM) combined with meteorological factors cause the haze, which brings inconvenience to people's daily life and deeply endanger people's health. Accumulating literature, to date, reported that PM are closely related to cardiopulmonary disease. Outpatient visits and admissions as a result of asthma and heart attacks gradually increase with an elevated concentration of PM. Owing to its special physicochemical property, the brain could be a potential target beyond the cardiopulmonary system. Possible routes of PM to the brain via a direct route or stimulation of pro-inflammatory cytokines have been reported in several documents concerning toxicity of engineered nanoparticles in rodents. Recent studies have demonstrated that PM have implications in oxidative stress, inflammation, dysfunction of cellular organelles, as well as the disturbance of protein homeostasis, promoting neuron loss and exaggerating the burden of central nervous system (CNS). Moreover, the smallest particles (nano-sized particles), which were involved in inflammation, reactive oxygen species (ROS), microglial activation and neuron loss, may accelerate the process of the neurodevelopmental disorder and neurodegenerative disease. Potential or other undiscovered mechanisms are not mutually exclusive but complementary aspects of each other. Epidemiology studies have shown that exposure to PM could bring about neurotoxicity and play a significant role in the etiology of CNS disease, which has been gradually corroborated by in vivo and in vitro studies. This review highlights research advances on the health effects of PM with an emphasis on neurotoxicity. With the hope of enhancing awareness in the public and calling for prevention and protective measures, it is a critical topic that requires proceeding exploration. Copyright © 2017 John Wiley & Sons, Ltd.

122 citations


Journal ArticleDOI
TL;DR: It is concluded that IONPs induce ROS‐mediated cytotoxicity in lymphocytes, with significant increase in ROS levels, lipid peroxidation level as well as depletion of antioxidant enzymes and glutathione.
Abstract: Over the past few decades nanotechnology and material science has progressed extremely rapidly. Iron oxide nanoparticles (IONPs) owing to their unique magnetic properties have a great potential for their biomedical and bioengineering applications. However, there is an inevitable need to address the issue of safety and health effects of these nanoparticles. Hence, the present study was aimed to assess the cytotoxic effects of IONPs on rats' lymphocytes. Using different assays, we studied diverse parameters including mitochondrial membrane potential, intracellular accumulation of reactive oxygen species (ROS), lactate dehydrogenase activity, antioxidant enzymes activity and DNA damage measurements. Intracellular metal uptake and ultrastructure analysis were also carried out through inductively coupled plasma atomic emission spectroscopy, transmission electron microscopy respectively. The results show that the IONP-induced oxidative stress was concentration-dependent in nature, with significant (P < 0.05) increase in ROS levels, lipid peroxidation level as well as depletion of antioxidant enzymes and glutathione. Moreover, we observed morphological changes in the cell after intracellular uptake and localization of nanoparticles in cells. From the findings of the study, it may be concluded that IONPs induce ROS-mediated cytotoxicity in lymphocytes. Copyright © 2017 John Wiley & Sons, Ltd.

83 citations


Journal ArticleDOI
Ping Li1, Tiantian Xu1, Siyu Wu1, Lili Lei1, Defu He1 
TL;DR: The present data suggest that chronic exposure of graphene‐based nanomaterials may cause neurotoxicity risks of inducing behavioral deficits and neural damage in dopaminergic and glutamatergic neurons.
Abstract: Nanomaterials of graphene and its derivatives have been widely applied in recent years, but whose impacts on the environment and health are still not well understood. In the present study, the potential adverse effects of graphite (G), graphite oxide nanoplatelets (GO) and graphene quantum dots (GQDs) on the motor nervous system were investigated using nematode Caenorhabditis elegans as the assay system. After being characterized using TEM, SEM, XPS and PLE, three nanomaterials were chronically exposed to C. elegans for 6 days. In total, 50-100 mg l-1 GO caused a significant reduction in the survival rate, but G and GDDs showed low lethality on nematodes. After chronic exposure of sub-lethal dosages, three nanomaterials were observed to distribute primarily in the pharynx and intestine; but GQDs were widespread in nematode body. Three graphene-based nanomaterials resulted in significant declines in locomotor frequency of body bending, head thrashing and pharynx pumping. In addition, mean speed, bending angle-frequency and wavelength of the crawling movement were significantly reduced after exposure. Using transgenic nematodes, we found high concentrations of graphene-based nanomaterials induced down-expression of dat-1::GFP and eat-4::GFP, but no significant changes in unc-47::GFP. This indicates that graphene-based nanomaterials can lead to damages in the dopaminergic and glutamatergic neurons. The present data suggest that chronic exposure of graphene-based nanomaterials may cause neurotoxicity risks of inducing behavioral deficits and neural damage. These findings provide useful information to understand the toxicity and safe application of graphene-based nanomaterials. Copyright © 2017 John Wiley & Sons, Ltd.

68 citations


Journal ArticleDOI
Yu Gong1, Yuejia Ji1, Fang Liu1, Juan Li1, Yi Cao1 
TL;DR: There was no interaction between ZnO NPs and PA or LPS on toxicity to HUVECs in vitro, with the emphasis on the interaction with palmitate or lipopolysaccharide.
Abstract: Recent studies showed that ZnO nanoparticles (NPs) might induce the toxicity to human endothelial cells. However, little is known about the interaction between ZnO NPs and circulatory components, which is likely to occur when NPs enter the blood. In this study, we evaluated ZnO NP-induced cytotoxicity, oxidative stress and inflammation in human umbilical vein endothelial cells (HUVECs), with the emphasis on the interaction with palmitate (PA) or lipopolysaccharide (LPS), because PA and LPS are normal components in human blood that increase in metabolic diseases. Overall, ZnO NPs induced cytotoxicity and intracellular reactive oxygen species (ROS) at a concentration of 32 μg ml-1 , but did not significantly affect the release of inflammatory cytokines or adhesion of THP-1 monocytes to HUVECs. In addition, exposure to ZnO NPs dose-dependently promoted intracellular Zn ions in HUVECs. PA and LPS have different effects. Two hundred μm PA significantly induced cytotoxicity and THP-1 monocyte adhesion, but did not affect ROS or release of inflammatory cytokines. In contrast, 1 μg ml-1 LPS significantly induced ROS, release of inflammatory cytokines and THP-1 monocyte adhesion, but not cytotoxicity. The presence of ZnO NPs did not significantly affect the toxicity induced by PA or LPS. In addition, the accumulation of Zn ions after ZnO NP exposure was not significantly affected by the presence of PA or LPS. We concluded that there was no interaction between ZnO NPs and PA or LPS on toxicity to HUVECs in vitro. Copyright © 2016 John Wiley & Sons, Ltd.

53 citations


Journal ArticleDOI
TL;DR: The results suggest that computational methods are promising tools to identify effectively the potential human skin sensitizers without animal testing.
Abstract: One of the Interagency Coordinating Committee on the Validation of Alternative Method's (ICCVAM) top priorities is the development and evaluation of non-animal approaches to identify potential skin sensitizers. The complexity of biological events necessary to produce skin sensitization suggests that no single alternative method will replace the currently accepted animal tests. ICCVAM is evaluating an integrated approach to testing and assessment based on the adverse outcome pathway for skin sensitization that uses machine learning approaches to predict human skin sensitization hazard. We combined data from three in chemico or in vitro assays - the direct peptide reactivity assay (DPRA), human cell line activation test (h-CLAT) and KeratinoSens™ assay - six physicochemical properties and an in silico read-across prediction of skin sensitization hazard into 12 variable groups. The variable groups were evaluated using two machine learning approaches, logistic regression and support vector machine, to predict human skin sensitization hazard. Models were trained on 72 substances and tested on an external set of 24 substances. The six models (three logistic regression and three support vector machine) with the highest accuracy (92%) used: (1) DPRA, h-CLAT and read-across; (2) DPRA, h-CLAT, read-across and KeratinoSens; or (3) DPRA, h-CLAT, read-across, KeratinoSens and log P. The models performed better at predicting human skin sensitization hazard than the murine local lymph node assay (accuracy 88%), any of the alternative methods alone (accuracy 63-79%) or test batteries combining data from the individual methods (accuracy 75%). These results suggest that computational methods are promising tools to identify effectively the potential human skin sensitizers without animal testing. Published 2016. This article has been contributed to by US Government employees and their work is in the public domain in the USA.

52 citations


Journal ArticleDOI
TL;DR: Gene expression results suggest that differentiating LUHMES cells may be susceptible to apoptosis because they express low levels of anti‐apoptotic genes BCL2 and BIRC5/survivin, whereas SH‐SY5Y cells mayBe resistant to apoptotic genes, whereas NSCs may be resistant to oxidative stress.
Abstract: More than 75 000 man-made chemicals contaminate the environment; many of these have not been tested for toxicities. These chemicals demand quantitative high-throughput screening assays to assess them for causative roles in neurotoxicities, including Parkinson's disease and other neurodegenerative disorders. To facilitate high throughput screening for cytotoxicity to neurons, three human neuronal cellular models were compared: SH-SY5Y neuroblastoma cells, LUHMES conditionally-immortalized dopaminergic neurons, and Neural Stem Cells (NSC) derived from human fetal brain. These three cell lines were evaluated for rapidity and degree of differentiation, and sensitivity to 32 known or candidate neurotoxicants. First, expression of neural differentiation genes was assayed during a 7-day differentiation period. Of the three cell lines, LUHMES showed the highest gene expression of neuronal markers after differentiation. Both in the undifferentiated state and after 7 days of neuronal differentiation, LUHMES cells exhibited greater cytotoxic sensitivity to most of 32 suspected or known neurotoxicants than SH-SY5Y or NSCs. LUHMES cells were also unique in being more susceptible to several compounds in the differentiating state than in the undifferentiated state; including known neurotoxicants colchicine, methyl-mercury (II), and vincristine. Gene expression results suggest that differentiating LUHMES cells may be susceptible to apoptosis because they express low levels of anti-apoptotic genes BCL2 and BIRC5/survivin, whereas SH-SY5Y cells may be resistant to apoptosis because they express high levels of BCL2, BIRC5/survivin, and BIRC3 genes. Thus, LUHMES cells exhibited favorable characteristics for neuro-cytotoxicity screening: rapid differentiation into neurons that exhibit high level expression neuronal marker genes, and marked sensitivity of LUHMES cells to known neurotoxicants. Copyright © 2016 John Wiley & Sons, Ltd.

52 citations


Journal ArticleDOI
TL;DR: Similar to their popular predecessors, H FPO2 and HFPO4 exposure exerted hepatic effects, including hepatomegaly and injury, and altered lipid metabolism gene levels in the liver, though HFP o4 exerted greater hepatotoxicity than HFPo2.
Abstract: The toxicological impact of traditional perfluoroalkyl chemicals has led to the elimination and restriction of these substances. However, many novel perfluoroalkyl alternatives remain unregulated and little is known about their potential effects on environmental and human health. Daily administration of two alternative perfluoroalkyl substances, HFPO2 and HFPO4 (1 mg kg−1 body weight), for 28 days resulted in hepatomegaly and hepatic histopathological injury in mice, particularly in the HFPO4 group. We generated and compared high-throughput RNA-sequencing data from hepatic tissues in control and treatment group mice to clarify the mechanism of HFPO2 and HFPO4 hepatotoxicity. We identified 146 (101 upregulated, 45 downregulated) and 1295 (716 upregulated, 579 downregulated) hepatic transcripts that exhibited statistically significant changes (fold change ≥2 or ≤0.5, false discovery rate < 0.05) after HFPO2 and HFPO4 treatment, respectively. Among them, 111 (82 upregulated, 29 downregulated) transcripts were changed in both groups, and lipid metabolism associated genes were dominant. Thus, similar to their popular predecessors, HFPO2 and HFPO4 exposure exerted hepatic effects, including hepatomegaly and injury, and altered lipid metabolism gene levels in the liver, though HFPO4 exerted greater hepatotoxicity than HFPO2. The unregulated use of these emerging perfluoroalkyl alternatives may affect environmental and human health, and their biological effects need further exploration. Copyright © 2016 John Wiley & Sons, Ltd.

51 citations


Journal ArticleDOI
TL;DR: The aim of the present review is to summarize and update the prominent evidence, regarding DON effects on liver tissues and cell lines, and outline some of the identified molecule targets or pathways involved in DON‐induced hepatotoxicity.
Abstract: Deoxynivalenol (DON) belongs to the group B trichothecenes, which are the most common mycotoxins in cereal commodities. It is very stable within the temperature range 170–350 °C, showing no reduction in its concentration after 30 min at 170 °C. This chemical property is a very dangerous factor for human and animal health. Liver is also responsible for the detoxification and formation of DON-glucuronide in both human and animals. Some studies already demonstrated that DON could induce liver damage remarkably through DON altering expressions of p53, caspase-3, caspase-7, caspase-8 and Bax in different cell lines. At the same time, other publications illustrated some opposite results. At present, a full and systematic discussion of the hepatic toxicity of DON is still lacking. Therefore, the aim of the present review is to summarize and update the prominent evidence, regarding DON effects on liver tissues and cell lines. Moreover, based on the current studies we outline some of the identified molecule targets or pathways involved in DON-induced hepatotoxicity, and put forward our opinions and suggest an hypothesis for future research. Copyright © 2016 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: The benchmark dose (BMD) as the threshold limit level of the cadmium (Cd) concentration in rice for itai‐itai disease and/or suspected disease was estimated for the first time based on data that previously evaluated the association for such diseases with the Cd concentration in Rice by using a logistic regression model.
Abstract: The aim of this study was to estimate the benchmark dose (BMD) as the threshold limit level of the cadmium (Cd) concentration in rice for itai-itai disease and/or suspected disease; it was based on the data that previously evaluated the association for such diseases with the Cd concentration in rice by using a logistic regression model. From 1971 to 1976, a total of 2446 rice samples were analyzed across the 88 hamlets in the Jinzu river basin. The mean Cd concentration in rice in each hamlet was used as the index of external Cd exposure of the entire population of the hamlet. We employed the incidence of itai-itai disease and/or suspected disease obtained from the available 55 hamlets. As the threshold, the lower limit of the BMD (BMDL) of the Cd concentration in rice for itai-itai disease and/or suspected disease was estimated using a logistic model, setting the benchmark response at 1% or 2%. The estimated BMDLs of the Cd concentration in rice for itai-itai disease and/or suspected disease were 0.62–0.76 and 0.27–0.56 mg kg−1 in men and women, respectively. The lowest BMDL was 0.27 mg kg−1 in women. In the present study, the threshold limit level of the Cd concentration in rice for itai-itai disease, which is the most severe form of chronic Cd poisoning, was estimated for the first time. This result provides important information about the worldwide standard for the Cd concentration in rice. Copyright © 2017 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: It is revealed that PFASs with shorter carbon chains are less toxic than PFOA, and that exposure to sublethal dosage of PfoA, PFHxA or PFBA affects cell metabolism.
Abstract: Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are synthetic fluorinated compounds that are highly bioaccumulative and persistent organic pollutants. Perfluorooctanoic acid (PFOA), an eight-carbon chain perfluorinated carboxylic acid, was used heavily for the production of fluoropolymers, but concerns have led to its replacement by shorter carbon chain homologues such as perfluorohexanoic acid (PFHxA) and perfluorobutanoic acid (PFBA). However, limited toxicity data exist for these substitutes. We evaluated the toxicity of PFOA, PFHxA and PFBA on a zebrafish liver cell line and investigated the effects of exposure on cell metabolism. Gross toxicity after 96 h of exposure was highest for PFOA and PFO- , while PFHxA and PFBA exhibited lower toxicity. Although the structural similarity of these compounds to fatty acids suggests the possibility of interference with the transport and metabolism of lipids, we could not detect any differential expression of peroxisome proliferator-activated receptor (ppar-α, -β and -γ), fabp3 and crot genes after 96 h exposure to up to 10 ppm of the test compounds. However, we observed localized lipid droplet accumulation only in PFBA-exposed cells. To study the effects of these compounds on cell metabolism, we conducted fluorescence lifetime imaging microscopy using naturally fluorescent biomarkers, NADH and FAD. The fluorescence lifetimes of NADH and FAD and the bound/free ratio of each of these coenzymes decreased in a dose- and carbon length-dependent manner, suggesting disruption of cell metabolism. In sum, our study revealed that PFASs with shorter carbon chains are less toxic than PFOA, and that exposure to sublethal dosage of PFOA, PFHxA or PFBA affects cell metabolism. Copyright © 2016 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: The results shown here demonstrate that SWCNT‐PEG has low toxicity in zebrafish embryos, but more studies are needed to understand what mechanisms are involved, because the presence of residual metals is possibly among the primary mechanisms responsible for the toxic effects observed.
Abstract: Single-wall carbon nanotubes functionalized with polyethylene glycol (SWCNT-PEG) are promising materials for biomedical applications such as diagnostic devices and controlled drug-release systems. However, several questions about their toxicological profile remain unanswered. Thus, the aim of this study was to investigate the action of SWCNT-PEG in Danio rerio zebrafish embryos at the molecular, physiological and morphological levels. The SWCNT used in this study were synthesized by the high-pressure carbon monoxide process, purified and then functionalized with distearoyl phosphatidylethanolamine block copolymer-PEG (molecular weight 2 kDa). The characterization process was carried out with low-resolution transmission electron microscopy, thermogravimetric analysis and Raman spectroscopy. Individual zebrafish embryos were exposed to the SWCNT-PEG. Toxic effects occurred only at the highest concentration tested (1 ppm) and included high mortality rates, delayed hatching and decreased total larval length. For all the concentrations tested, the alkaline comet assay revealed no genotoxicity, and Raman spectroscopy measurements on the histological slices revealed no intracellular nanotubes. The results shown here demonstrate that SWCNT-PEG has low toxicity in zebrafish embryos, but more studies are needed to understand what mechanisms are involved. However, the presence of residual metals is possibly among the primary mechanisms responsible for the toxic effects observed, because the purification process was not able to remove all metal contamination, as demonstrated by the thermogravimetric analysis. More attention must be given to the toxicity of these nanomaterials before they are used in biomedical applications. Copyright © 2016 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: It is demonstrated that AgNP exposure significantly and dose‐dependently decreased the cell viability, induced reactive oxygen species (ROS) generation and led to early apoptosis in HUVECs, providing insight into the mechanisms of oxidative stress induced by AgNPs in vascular endothelial cells.
Abstract: It has been widely reported that silver nanoparticles (AgNPs) induce oxidative stress in various cell lines. However, the mechanism for this effect and its consequences for cellular signaling are poorly understood. In this study, human umbilical vein endothelial cells (HUVECs) were used to assess the toxicity and investigate the associated molecular mechanisms caused by exposure to AgNPs. We demonstrated that AgNP exposure significantly and dose-dependently decreased the cell viability, induced reactive oxygen species (ROS) generation and led to early apoptosis in HUVECs. Our findings showed that AgNPs induced excess ROS production that affected the signaling pathways by a mechanism that depended on activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity through upregulation of NADPH oxidase 4 (NOX4) protein expressions. Moreover, AgNPs could disrupt the inactivation of the nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidant response, which is considered another important element for oxidative stress caused by AgNPs in HUVECs. The redox imbalance between NOX4 and Nrf2 was an important cause for the ROS overproduction that led to cell injury in HUVECs. The results provided insight into the mechanisms of oxidative stress induced by AgNPs in vascular endothelial cells.

Journal ArticleDOI
TL;DR: In this article, the authors developed statistical models to predict skin sensitization potency for the murine local lymph node assay (LLNA) and human outcomes, using six physicochemical properties and data from three non-animal test methods.
Abstract: The replacement of animal use in testing for regulatory classification of skin sensitizers is a priority for US federal agencies that use data from such testing. Machine learning models that classify substances as sensitizers or non-sensitizers without using animal data have been developed and evaluated. Because some regulatory agencies require that sensitizers be further classified into potency categories, we developed statistical models to predict skin sensitization potency for murine local lymph node assay (LLNA) and human outcomes. Input variables for our models included six physicochemical properties and data from three non-animal test methods: direct peptide reactivity assay; human cell line activation test; and KeratinoSens™ assay. Models were built to predict three potency categories using four machine learning approaches and were validated using external test sets and leave-one-out cross-validation. A one-tiered strategy modeled all three categories of response together while a two-tiered strategy modeled sensitizer/non-sensitizer responses and then classified the sensitizers as strong or weak sensitizers. The two-tiered model using the support vector machine with all assay and physicochemical data inputs provided the best performance, yielding accuracy of 88% for prediction of LLNA outcomes (120 substances) and 81% for prediction of human test outcomes (87 substances). The best one-tiered model predicted LLNA outcomes with 78% accuracy and human outcomes with 75% accuracy. By comparison, the LLNA predicts human potency categories with 69% accuracy (60 of 87 substances correctly categorized). These results suggest that computational models using non-animal methods may provide valuable information for assessing skin sensitization potency. Copyright © 2017 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: It is shown that surface chemistry plays a major role in the toxicological profile of the graphene structures, where pristine graphene was the most cytotoxic, with decreasing toxicity observed with increasing oxygen content.
Abstract: Graphene and its derivative, because of their unique physical, electrical and chemical properties, are an important class of nanomaterials being proposed as foundational materials in nanomedicine as well as for a variety of industrial applications. A major limitation for graphene, when used in biomedical applications, is its poor solubility due to its rather hydrophobic nature. Therefore, chemical functionalities are commonly introduced to alter both its surface chemistry and biochemical activity. Here, we show that surface chemistry plays a major role in the toxicological profile of the graphene structures. To demonstrate this, we chemically increased the oxidation level of the pristine graphene and compared the corresponding toxicological effects along with those for the graphene oxide. X-ray photoelectron spectroscopy revealed that pristine graphene had the lowest amount of surface oxygen, while graphene oxide had the highest at 2.5% and 31%, respectively. Low and high oxygen functionalized graphene samples were found to have 6.6% and 24% surface oxygen, respectively. Our results showed a dose-dependent trend in the cytotoxicity profile, where pristine graphene was the most cytotoxic, with decreasing toxicity observed with increasing oxygen content. Increased surface oxygen also played a role in nanomaterial dispersion in water or cell culture medium over longer periods. It is likely that higher dispersity might result in graphene entering into cells as individual flakes ~1 nm thick rather than as more cytotoxic aggregates. In conclusion, changes in graphene's surface chemistry resulted in altered solubility and toxicity, suggesting that a generalized toxicity profile would be rather misleading. Copyright © 2016 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: The environmental chemicals assessed in the present study induced both lethal and sublethal effects in zebrafish embryos and larvae, as assessed by using OECD TG 212.
Abstract: Fish embryo toxicity tests are used to assess the lethal and sublethal effects of environmental chemicals in aquatic organisms. Previously, we used a short-term toxicity test published by the Organization for Economic Co-operation and Development (test no. 212: Fish, Short-term Toxicity Test on Embryo and Sac-Fry Stages [OECD TG 212]) to assess the lethal and sublethal effects of aniline and several chlorinated anilines in zebrafish embryos and larvae. To expand upon this previous study, we used OECD TG 212 in zebrafish embryos and larvae to assess the lethal and sublethal effects of 20 additional environmental chemicals that included active pharmaceutical ingredients, pesticides, metals, aromatic compounds or chlorinated anilines. Zebrafish embryos (Danio rerio) were exposed to the test chemicals until 8 days post-fertilization. A delayed lethal effect was induced by 16 of the 20 test chemicals, and a positive correlation was found between heart rate turbulence and mortality. We also found that exposure to the test chemicals at concentrations lower than the lethal concentration induced the sublethal effects of edema, body curvature and absence of swim-bladder inflation. In conclusion, the environmental chemicals assessed in the present study induced both lethal and sublethal effects in zebrafish embryos and larvae, as assessed by using OECD TG 212. Copyright © 2017 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: Advances in understanding the molecular basis of mammalian autophagy, methods used to induce and evaluate autophagic components, and the diverse interactions between autophagosomes and drug toxicity, disease progression and carcinogenesis are discussed.
Abstract: Autophagy is a cellular process that facilitates nutrient turnover and removal of expended macromolecules and organelles to maintain homeostasis. The recycling of cytosolic macromolecules and damaged organelles by autophagosomes occurs through the lysosomal degradation pathway. Autophagy can also be upregulated as a prosurvival pathway in response to stress stimuli such as starvation, hypoxia or cell damage. Over the last two decades, there has been a surge in research revealing the basic molecular mechanisms of autophagy in mammalian cells. A corollary of an advanced understanding of autophagy has been a concurrent expansion of research into understanding autophagic function and dysfunction in pathology. Recent studies have revealed a pivotal role for autophagy in drug toxicity, and for utilizing autophagic components as diagnostic markers and therapeutic targets in treating disease and cancer. In this review, advances in understanding the molecular basis of mammalian autophagy, methods used to induce and evaluate autophagy, and the diverse interactions between autophagy and drug toxicity, disease progression and carcinogenesis are discussed. Copyright © 2016 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: It is shown that adverse effects on adult behavior and cognitive function occurred in both male and female mice exposed to paracetamol on postnatal days 3 and 10, but not when exposed on PND 19, which may be of great importance for future research and, ultimately, for clinical practice.
Abstract: Paracetamol (acetaminophen) is a widely used non-prescription drug with analgesic and antipyretic properties. Among pregnant women and young children, paracetamol is one of the most frequently used ...

Journal ArticleDOI
TL;DR: These studies, for the first time, suggest that GLY may affect the reproductive system in cattle via direct action on ovarian function; however, further studies will be required to understand better the mechanism of action and to determine the in vivo reproductive effects of GLY.
Abstract: Glyphosate (GLY) is a common herbicide used worldwide but its effect on ovarian function in mammals is unknown. The aim of this study was to determine the potential endocrine disruptor effects of GLY on ovarian function evaluating cell proliferation, steroidogenesis and gene expression using bovine granulosa cells (GC) and theca cells as in vitro models. GC proliferation was impaired (P < 0.05) after exposure to GLY at 0.5, 1.7 and 5 μg ml-1 . GC progesterone production was not affected (P ≥ 0.05) at all doses tested while estradiol production was inhibited (P < 0.05) by GLY at 5 μg ml-1 . At the same concentration GLY showed no effect (P ≥ 0.05) on theca cell proliferation and steroidogenesis. At higher concentrations (0.01 and 0.3 mg ml-1 ), GLY had no significant effect (P ≥ 0.05) on GC proliferation and steroidogenesis. These studies, for the first time, suggest that GLY may affect the reproductive system in cattle via direct action on ovarian function; however, further studies will be required to understand better the mechanism of action and to determine the in vivo reproductive effects of GLY. Copyright © 2016 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: Human cultured astrocytes were susceptible to both Fe3O4NP and bulk forms following short‐term and extended exposure to low concentrations, while neurons were more resistant to NPs.
Abstract: Since magnetic iron oxide nanoparticles (IONP) as magnetite (Fe3O4NPs) have potential applications in life sciences, industrial fields and biomedical care, the risks for occupational, general population and patients rises correspondingly. Excessive IONP accumulation in central nervous system (CNS) cells can lead to a disruption of normal iron metabolism/homeostasis, which is a characteristic hallmark resembling that of several neurodegenerative disorders. Fe3O4NPs- versus Fe3O4 bulk-induced toxic effects have been assessed in two human CNS cells namely astrocytes (D384) and neurons (SH-SY5Y) after short-term exposure (4–24-48 h) to 1–100 μg ml−1, and long-term exposure to lower concentrations. Short-term Fe3O4NPs induced significant concentration- and time-dependent alterations of mitochondrial function in D384 (25–75% cell viability decrease): effects started at 25 μg ml−1 after 4 h, and 1 μg ml−1 after 48 h. SH-SY5Y were less susceptible: cytotoxicity occurred after 48 h only with 35–45% mortality (10–100 μg ml−1). Accordingly, a more marked intracellular iron accumulation was observed in astrocytes than neurons. Membrane integrity was unaltered in both CNS cell types. Lowering Fe3O4NP concentrations (0.05–10 μg ml−1) and prolonging the exposure time (up to 10 days), D384 toxicity was again observed (colony number decrease at ≥0.05 μg ml−1, morphology alterations and colony size reduction at ≥0.5 μg ml−1). Effects on SH-SY5Y appeared at the highest concentration only. Fe3O4 bulk was always remarkably toxic toward both cells. In summary, human cultured astrocytes were susceptible to both Fe3O4NP and bulk forms following short-term and extended exposure to low concentrations, while neurons were more resistant to NPs. Cellular iron overload may trigger adverse responses by releasing iron ions (particularly in astrocytes) thus compromising the normal functions of CNS. Copyright © 2016 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: Exposure to mePB increases breast cancer tumor proliferation through enhanced TIC activity, in part via regulation of NANOG, and that mePB may play a direct role in chemoresistance by modulating stem cell activity is suggested.
Abstract: A body of epidemiological evidence implicates exposure to endocrine disrupting chemicals (EDCs) with increased susceptibility to breast cancer. To evaluate the physiological effects of a suspected EDC in vivo, we exposed MCF-7 breast cancer cells and a patient-derived xenograft (PDX, estrogen receptor positive) to physiological levels of methylparaben (mePB), which is commonly used in personal care products as a preservative. mePB pellets (4.4 μg per day) led to increased tumor size of MCF-7 xenografts and ER+ PDX tumors. mePB has been thought to be a xenoestrogen; however, in vitro exposure of 10 nM mePB failed to increase MCF-7 cell proliferation or induction of canonical estrogen-responsive genes (pS2 and progesterone receptor), in contrast to 17β-estradiol (E2) treatment. MCF-7 and PDX-derived mammospheres exhibited increased size and up-regulation of canonical stem cell markers ALDH1, NANOG, OCT4 and SOX2 when exposed to mePB; these effects were not observed for MDA-MB-231 (ER−) mammospheres. As tumor-initiating cells (TICs) are also believed to be responsible for chemoresistance, mammospheres were treated with either tamoxifen or the pure anti-estrogen fulvestrant in the presence of mePB. Blocking the estrogenic response was not sufficient to block NANOG expression in mammospheres, pointing to a non-classic estrogen response or an ER-independent mechanism of mePB promotion of mammosphere activity. Overall, these results suggest that mePB increases breast cancer tumor proliferation through enhanced TIC activity, in part via regulation of NANOG, and that mePB may play a direct role in chemoresistance by modulating stem cell activity. Copyright © 2016 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: It is demonstrated that silver crosses the placenta and is transferred to the fetus regardless of the form of silver, as indicated by NMR metabolomics analysis of urine.
Abstract: Few investigations have been conducted on the disposition and fate of silver nanoparticles (AgNP) in pregnancy. The distribution of a single dose of polyvinylpyrrolidone (PVP)-stabilized AgNP was investigated in pregnant rats. Two sizes of AgNP, 20 and 110 nm, and silver acetate (AgAc) were used to investigate the role of AgNP diameter and particle dissolution in tissue distribution, internal dose and persistence. Dams were administered AgNP or AgAc intravenously (i.v.) (1 mg kg-1 ) or by gavage (p.o.) (10 mg kg-1 ), or vehicle alone, on gestation day 18 and euthanized at 24 or 48 h post-exposure. The silver concentration in tissues was measured using inductively-coupled plasma mass spectrometry. The distribution of silver in dams was influenced by route of administration and AgNP size. The highest concentration of silver (μg Ag g-1 tissue) at 48 h was found in the spleen for i.v. administered AgNP, and in the lungs for AgAc. At 48 h after p.o. administration of AgNP, the highest concentration was measured in the cecum and large intestine, and for AgAc in the placenta. Silver was detected in placenta and fetuses for all groups. Markers of cardiovascular injury, oxidative stress marker, cytokines and chemokines were not significantly elevated in exposed dams compared to vehicle-dosed control. NMR metabolomics analysis of urine indicated that AgNP and AgAc exposure impact the carbohydrate, and amino acid metabolism. This study demonstrates that silver crosses the placenta and is transferred to the fetus regardless of the form of silver. Copyright © 2016 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: The safety of MSC‐EV supports their use for disease therapeutics, whereas detailed safety and toxicological assessment will be necessary before the use of BM‐EVs.
Abstract: Extracellular vesicles (EVs) are membrane-bound vesicles released from cells into the extracellular environment. There is emerging interest in the use of EVs as potential therapeutic interventions. We sought to evaluate the safety of EVs that may be therapeutically used by performing in vitro toxicological assessments. EVs were obtained from mesenchymal stem cells (MSC-EV) or from bovine milk (BM-EV) by differential ultracentrifugation, and quantitated using nanoparticle tracking analysis. Genotoxic effects, hematological effects, immunological effects and endotoxin production were evaluated at two dose levels. Neither MSC-EVs nor BM-EVs elicited detectable genotoxic effects using either the alkaline comet assay or micronucleus assay. Hemolysis was observed with BM-EVs but not with MSC-EVs. MSC-EVs did not have any significant effect on either spontaneous or collagen-induced platelet aggregation. In contrast, BM-EVs were noted to increase collagen-induced platelet aggregation, even though no spontaneous increase in platelet aggregation was noted. Both types of EVs induced leukocyte proliferation, which was greater with BM-EV. Neither MSC-EVs nor BM-EVs induced HL-60 phagocytosis, although BM-EVs decreased zymosan-induced phagocytosis. Furthermore, neither MSC-EVs nor BM-EVs induced nitric oxide production. Unlike MSC-EVs, BM-EVs tested positive for endotoxin and induced complement activation. There are significant differences in toxicological profiles between MSC-EVs and BM-EVs that may reflect variations in techniques for EV isolation, EV content or cross-species differences. The safety of MSC-EV supports their use for disease therapeutics, whereas detailed safety and toxicological assessment will be necessary before the use of BM-EVs. Copyright © 2016 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: Comparison of urine and plasma miRNAs demonstrated their utility as biomarkers of organ injury by showing the increase of serum miR‐802 in both hepatotoxicant treatments was comparable to that of the well‐known liver damage marker miR-122.
Abstract: MicroRNAs (miRNA) are short single-stranded RNA sequences that have a role in the post-transcriptional regulation of genes. The identification of tissue specific or enriched miRNAs has great potential as novel safety biomarkers. One longstanding goal is to associate the increase of miRNA in biofluids (e.g., plasma and urine) with tissue-specific damage. Next-generation sequencing (miR-seq) was used to analyze changes in miRNA profiles of tissue, plasma and urine samples of rats treated with either a nephrotoxicant (cisplatin) or one of two hepatotoxicants (acetaminophen [APAP] or carbon tetrachloride [CCL4 ]). Analyses with traditional serum chemistry and histopathology confirmed that toxicant-induced organ damage was specific. In animals treated with cisplatin, levels of five miRNAs were significantly altered in the kidney, 14 in plasma and six in urine. In APAP-treated animals, five miRNAs were altered in the liver, 74 in plasma and six in urine; for CCL4 the changes were five, 20 and 6, respectively. Cisplatin treatment caused an elevation of miR-378a in the urine, confirming the findings of other similar studies. There were 17 in common miRNAs elevated in the plasma after treatment with either APAP or CCL4 . Four of these (miR-122, -802, -31a and -365) are known to be enriched in the livers of rats. Interestingly, the increase of serum miR-802 in both hepatotoxicant treatments was comparable to that of the well-known liver damage marker miR-122. Taken together, comparative analysis of urine and plasma miRNAs demonstrated their utility as biomarkers of organ injury. Copyright © 2016 The Authors. Journal of Applied Toxicology published by John Wiley & Sons Ltd.

Journal ArticleDOI
TL;DR: AlNPs (13 and 50 nm), rather than bulk alumina, induce markers of genotoxicity in mice, with oxidative stress as a potential mechanism driving these genotoxic effects.
Abstract: Although nanomaterials have the potential to improve human life, their sideline effects on human health seem to be inevitable and still are unknown. Some studies have investigated the genotoxicity of alumina nanoparticles (AlNPs); however, this effect is still unclear due to insufficient evaluation and conflicting results. Using a battery of standard genotoxic assays, the present study offers evidence of the genotoxicity associated with aluminum oxide (alumina) at NP sizes of 50 and 13 nm, when compared with bulk alumina (10 μm). The genotoxicity induced by alumina at bulk and NP sizes was evaluated with Ames test, comet test, micronucleus assay and sperm deformity test. The mechanism related to the induction of reactive oxygen species was explored as well. Our results showed that AlNPs (13 and 50 nm) were able to enter cells and induced DNA damage, micronucleus in bone marrow, sperm deformation and reactive oxygen species induction in a time-, dose- and size-dependent manner. Therefore, we conclude that AlNPs (13 and 50 nm), rather than bulk alumina, induce markers of genotoxicity in mice, with oxidative stress as a potential mechanism driving these genotoxic effects. Copyright © 2017 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: It is suggested that low levels of ATBC may be detrimental to ovarian function, thus, more information is needed to understand better the impact of lower ATBC on female reproduction.
Abstract: Acetyl tributyl citrate (ATBC), is a phthalate substitute used in food and medical plastics, cosmetics and toys. Although systemically safe up to 1000 mg kg−1 day−1, its ability to cause reproductive toxicity in females at levels below 50 mg kg−1 day−1 has not been examined. This study evaluated the effects of lower ATBC exposures on female reproduction using mice. Adult CD-1 females (n = 7–8 per treatment) were dosed orally with tocopherol-stripped corn oil (vehicle), 5 or 10 mg kg−1 day−1 ATBC daily for 15 days, and then bred with a proven breeder male. ATBC exposure did not alter body weights, estrous cyclicity, and gestational and litter parameters. Relative spleen weight was slightly increased in the 5 mg kg−1 day−1 group. ATBC at 10 mg kg−1 day−1 targeted ovarian follicles and decreased the number of primordial, primary and secondary follicles present in the ovary. These findings suggest that low levels of ATBC may be detrimental to ovarian function, thus, more information is needed to understand better the impact of ATBC on female reproduction. Copyright © 2016 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: It is indicated that PFOS is capable of inducing proinflammatory interferon‐gamma, but not immunoregulatory interleukin‐4 production in T cells, which may establish a state of chronic immune activation known to be associated with susceptibility to disease.
Abstract: Perfluoroalkyl acids (PFAAs) are highly stable compounds that have been associated with immunotoxicity in epidemiologic studies and experimental rodent models. Lengthy half-lives and resistance to environmental degradation result in bioaccumulation of PFAAs in humans and wildlife. Perfluorooctane sulfonate (PFOS), the most prevalent PFAA detected within the environment, is found at high levels in occupationally exposed humans. We have monitored the environmental exposure of dolphins in the Charleston, SC region for over 10 years and levels of PFAAs, and PFOS in particular, were significantly elevated. As dolphins may serve as large mammal sentinels to identify the impact of environmental chemical exposure on human disease, we sought to assess the effect of environmental PFAAs on the cellular immune system in highly exposed dolphins. Herein, we utilized a novel flow cytometry-based assay to examine T cell-specific responses to environmental PFAA exposure ex vivo and to exogenous PFOS exposure in vitro. Baseline PFOS concentrations were associated with significantly increased CD4+ and CD8+ T cell proliferation from a heterogeneous resident dolphin population. Further analysis demonstrated that in vitro exposure to environmentally relevant levels of PFOS promoted proinflammatory cytokine production and proliferation in a dose-dependent manner. Collectively, these findings indicate that PFOS is capable of inducing proinflammatory interferon-gamma, but not immunoregulatory interleukin-4 production in T cells, which may establish a state of chronic immune activation known to be associated with susceptibility to disease. These findings suggest that PFOS directly dysregulates the dolphin cellular immune system and has implications for health hazards. Copyright © 2017 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: It is demonstrated that pristine graphene exposed to cultured kidney tubular epithelial cells is capable of inducing DNA fragmentation measured by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, which is usually associated with cell death.
Abstract: Graphene, a crystalline allotrope or carbon, presents numerous useful properties; however, its toxicity is yet to be determined One of the most dramatic and irreversible toxic abilities of carbon nanomaterials is the induction of DNA fragmentation produced by endogenous cellular endonucleases This study demonstrated that pristine graphene exposed to cultured kidney tubular epithelial cells is capable of inducing DNA fragmentation measured by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, which is usually associated with cell death TUNEL (cell death) and endonuclease activity measured using a near infrared fluorescence probe was significantly higher in cells containing graphene aggregates detected by Raman spectroscopy The elevation of TUNEL coincided with the increased abundance of heme oxygenase 1 (HO-1), heat shock protein 90 (HSP90), active caspase-3 and endonucleases (deoxyribonuclease I [DNase I] and endonuclease G [EndoG]), as measured by quantitative immunocytochemistry Specific inhibitors for HO-1, HSP90, caspase-3, DNase I and EndoG almost completely blocked the DNA fragmentation induced by graphene exposure Therefore, graphene induces cell death through oxidative injury, caspase-mediated and caspase-independent pathways; and endonucleases DNase I and EndoG are important for graphene toxicity Inhibition of these pathways may ameliorate cell injury produced by graphene Copyright © 2017 John Wiley & Sons, Ltd