scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Nanoparticle Research in 2015"


Journal ArticleDOI
TL;DR: In this article, the authors evaluate the current literature on the use of nanoscale nutrients (metals, metal oxides, carbon) to suppress crop disease and subsequently enhance growth and yield.
Abstract: Nanotechnology has the potential to play a critical role in global food production, food security, and food safety. The applications of nanotechnology in agriculture include fertilizers to increase plant growth and yield, pesticides for pest and disease management, and sensors for monitoring soil quality and plant health. Over the past decade, a number of patents and products incorporating nanomaterials into agricultural practices (e.g., nanopesticides, nanofertilizers, and nanosensors) have been developed. The collective goal of all of these approaches is to enhance the efficiency and sustainability of agricultural practices by requiring less input and generating less waste than conventional products and approaches. This review evaluates the current literature on the use of nanoscale nutrients (metals, metal oxides, carbon) to suppress crop disease and subsequently enhance growth and yield. Notably, this enhanced yield may not only be directly linked to the reduced presence of pathogenic organisms, but also to the potential nutritional value of the nanoparticles themselves, especially for the essential micronutrients necessary for host defense. We also posit that these positive effects are likely a result of the greater availability of the nutrients in the “nano” form. Last, we offer comments on the current regulatory perspective for such applications.

467 citations


Journal ArticleDOI
TL;DR: In this article, a mild-temperature, nonchemical technique is used to produce a nanohybrid multifunctional (electro-conducting and magnetic) powder material by intercalating iron oxide nanoparticles in large aspect ratio, open-ended, hollow-core carbon nanofibers (CNFs).
Abstract: A mild-temperature, nonchemical technique is used to produce a nanohybrid multifunctional (electro-conducting and magnetic) powder material by intercalating iron oxide nanoparticles in large aspect ratio, open-ended, hollow-core carbon nanofibers (CNFs). Single-crystal, superparamagnetic Fe3O4 nanoparticles (10 nm average diameter) filled the CNF internal cavity (diameter <100 nm) after successive steps starting with dispersion of CNFs and magnetite nanoparticles in aqueous or organic solvents, sequencing or combining sonication-assisted capillary imbibition and concentration-driven diffusion, and finally drying at mild temperatures. The influence of several process parameters—such as sonication type and duration, concentration of solids dispersed in solvent, CNF-to-nanoparticle mass ratio, and drying temperature—on intercalation efficiency (evaluated in terms of particle packing in the CNF cavity) was studied using electron microscopy. The magnetic CNF powder was used as a low-concentration filler in poly(methyl methacrylate) to demonstrate thin free-standing polymer films with simultaneous magnetic and electro-conducting properties. Such films could be implemented in sensors, optoelectromagnetic devices, or electromagnetic interference shields.

264 citations


Journal ArticleDOI
TL;DR: In this paper, a facile method to prepare bismuth and Fe3O4 nanoparticles loaded on reduced graphene oxide magnetic hybrids using soluble starch as a dispersant is demonstrated, which provides an efficient and recyclable catalyst for the use in environmental protection applications.
Abstract: Nanocatalysts are frequently connected to magnetic nanoparticles. These composites are easy to be retrieved from the reaction system under a magnetic field because of their magnetic properties. Magnetic separation is particularly promising in industry since it can solve many issues present in filtration, centrifugation, or gravitation separation. Herein, a facile method to prepare bismuth and Fe3O4 nanoparticles loaded on reduced graphene oxide magnetic hybrids (Bi-Fe3O4@RGO) using soluble starch as a dispersant is demonstrated. The magnetic Fe3O4 nanoparticles were synthesized by the co-precipitation of Fe2+ and Fe3+ ions, and Bi nanoparticles were fabricated by the redox reactions between sodium borohydride and ammonium bismuth citrate in the presence of soluble starch. Transmission electron microscopy images demonstrate that the average diameter of the Fe3O4 nanoparticles is about 5 nm and the diameters of Bi nanoparticles range from 10 to 20 nm. The magnetic Bi-Fe3O4@RGO hybrids exhibit high catalytic activity in the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by NaBH4 with a first-order rate constant (K) of 0.00808 s−1 and is magnetically recyclable for at least five cycles. This strategy provides an efficient and recyclable catalyst for the use in environmental protection applications.

219 citations


Journal ArticleDOI
TL;DR: In this paper, the authors extensively review gas-sensing properties of core@shell nanocomposites in which metals as the core and metal oxides as the shell structure, both of nanometer sizes, are assembled into a single metal@metal oxide core-shell.
Abstract: With an ever-increasing number of applications in many advanced fields, gas sensors are becoming indispensable devices in our daily life. Among different types of gas sensors, conductometric metal oxide semiconductor (MOS) gas sensors are found to be the most appealing for advanced applications in the automotive, biomedical, environmental, and safety sectors because of the their high sensitivity, reduced size, and low cost. To improve their sensing characteristics, new metal oxide-based nanostructures have thus been proposed in recent years as sensing materials. In this review, we extensively review gas-sensing properties of core@ shell nanocomposites in which metals as the core and metal oxides as the shell structure, both of nanometer sizes, are assembled into a single metal@metal oxide core–shell. These nanostructures not only combine the properties of both noble metals and metal oxides, but also bring unique synergetic functions in comparison with single-component materials. Up-dated achievements in the synthesis and characterization of metal@metal oxide core–shell nanostructures as well as their use in MOS sensors are here reported with the main objective of providing an overview about their gas-sensing properties.

166 citations


Journal ArticleDOI
TL;DR: In this paper, percutaneous penetration of platinum and rhodium nanoparticles (PtNPs: 5.8-±-0.9nm, RhNPs 5.3-±1.9mm) through human skin was evaluated using Franz diffusion cells with intact and damaged skin.
Abstract: The aim of the study was to evaluate percutaneous penetration of platinum and rhodium nanoparticles (PtNPs: 5.8 ± 0.9 nm, RhNPs: 5.3 ± 1.9 nm) through human skin. Salts compounds of these metals are sensitizers and some also carcinogenic agents. In vitro permeation experiments were performed using Franz diffusion cells with intact and damaged skin. PtNPs and RhNPs, stabilized with polyvinylpyrrolidone, were synthesized by reduction of Na2PtCl6 and RhCl3·3H2O respectively. Suspensions with a concentration of 2.0 g/L of PtNPs and RhNPs were dispersed separately in synthetic sweat at pH 4.5 and applied as donor phases to the outer surface of the skin for 24 h. Measurements of the content of the metals in the receiving solution and in the skin were performed subsequently. Rhodium skin permeation was demonstrated through damaged skin, with a permeation flux of 0.04 ± 0.04 μg cm−2 h−1 and a lag time of 7.9 ± 1.1 h, while no traces of platinum were found in receiving solutions. Platinum and rhodium skin-analysis showed significantly higher concentrations of the metals in damaged skin. Rh and Pt applied as NPs can penetrate the skin barrier and Rh can be found in receiving solutions. These experiments pointed out the need for skin contamination prevention, since even a minor injury to the skin barrier can significantly increase penetration.

156 citations


Journal ArticleDOI
TL;DR: In this paper, the authors show that graphene at a low concentration affected tomato seed germination and seedling growth, and that the penetration might break the husks to facilitate water uptake, resulting in faster germination.
Abstract: The environmental impact of graphene has recently attracted great attention. In this work, we show that graphene at a low concentration affected tomato seed germination and seedling growth. Graphene-treated seeds germinated much faster than control seeds. Analytical results indicated that graphene penetrated seed husks. The penetration might break the husks to facilitate water uptake, resulting in faster germination and higher germination rates. At the stage of seedling growth, graphene was also able to penetrate root tip cells. Seedlings germinated from graphene-treated seeds had slightly lower biomass accumulation than the control, but exhibited significantly longer stems and roots than the control, which suggests that graphene, in contrast with other nanoparticles, had different effects on seedling growth. Taken together, our results imply that graphene played complicated roles in affecting the initial stage of seed germination and subsequent seedling growth.

125 citations


Journal ArticleDOI
TL;DR: The present review summarizes the literature on in vitro toxicity of ZnO nanoparticles (10–100 nm) on various cell lines and reports the occurrence of apoptosis, increased ROS level, reduced mitochondrial activity and formation of tubular intracellular structures are reported following exposure of ZoN nanoparticles in skin cells.
Abstract: The toxic effect of ZnO nanoparticles is due to their solubility. ZnO nanoparticles dissolve in the extracellular region, which in turn increases the intracellular [Zn2+] level. The mechanism for increased intracellular [Zn2+] level and ZnO nanoparticles dissolution in the medium is still unclear. Cytotoxicity, increased oxidative stress, increased intracellular [Ca2+] level, decreased mitochondrial membrane potential, and interleukin-8 productions occur in the BEAS-2B bronchial epithelial cells and A549 alveolar adenocarcinoma cells following the exposure of ZnO nanoparticles. Confluent C2C12 cells are more resistant to ZnO nanoparticles compared to the sparse monolayer. Loss of 3T3-L1 cell viability, membrane leakage, and morphological changes occurs due to exposure of ZnO nanoparticles. ZnO nanoparticle induces cytotoxicity and mitochondrial dysfunction in RKO colon carcinoma cells. The occurrence of apoptosis, increased ROS level, reduced mitochondrial activity and formation of tubular intracellular structures are reported following exposure of ZnO nanoparticles in skin cells. Macrophages, monocytes, and dendritic cells are affected by ZnO nanoparticles. In addition, genotoxicity is also induced. The present review summarizes the literature on in vitro toxicity of ZnO nanoparticles (10–100 nm) on various cell lines.

124 citations


Journal ArticleDOI
TL;DR: The analysis of cell viability after PANI-Nps exposure shows that these nanoparticles are not cytotoxic even at high concentration and show no change in cell morphology and metabolic activity, and it is found that nanoparticle cell uptake reaches the maximum value c.a. 3 h after incubation.
Abstract: Fil: Yslas, Edith Ines. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba; Argentina. Universidad Nacional de Rio Cuarto. Facultad de Ciencias Exactas, Fisicoquimicas y Naturales. Departamento de Biologia Molecular. Seccion Quimica Biologica; Argentina

114 citations


Journal ArticleDOI
TL;DR: The integrated in vitro model can be used for prioritizing NPs before further in vivo testing for risk assessment, and partly confirms the in vitro findings, where the same NPs translocated to the highest extent.
Abstract: The likelihood of oral exposure to nanoparticles (NPs) is increasing, and it is necessary to evaluate the oral bioavailability of NPs. In vitro approaches could help reducing animal studies, but validation against in vivo studies is essential. Previously, we assessed the translocation of 50 nm polystyrene NPs of different charges (neutral, positive and negative) using a Caco-2/HT29-MTX in vitro intestinal translocation model. The NPs translocated in a surface charge-dependent manner. The present study aimed to validate this in vitro intestinal model by an in vivo study. For this, rats were orally exposed to a single dose of these polystyrene NPs and the uptake in organs was determined. A negatively charged NP was taken up more than other NPs, with the highest amounts in kidney (37.4 µg/g tissue), heart (52.8 µg/g tissue), stomach wall (98.3 µg/g tissue) and small intestinal wall (94.4 µg/g tissue). This partly confirms our in vitro findings, where the same NPs translocated to the highest extent. The estimated bioavailability of different types of NPs ranged from 0.2 to 1.7 % in vivo, which was much lower than in vitro (1.6–12.3 %). Therefore, the integrated in vitro model cannot be used for a direct prediction of the bioavailability of orally administered NPs. However, the model can be used for prioritizing NPs before further in vivo testing for risk assessment.

105 citations


Journal ArticleDOI
TL;DR: Results show that when using equimolar silver solutions, silver nitrate has higher toxic potential on all microorganisms than both nanoparticles tested, and some microorganisms are more susceptible to silver than others and the choice of capping agent is relevant in the toxicity.
Abstract: The toxicity mechanism employed by silver nanoparticles against microorganisms has captivated scientists for nearly a decade and remains a debatable issue. The question most frequently asked is whether silver nanoparticles exert specific effects on microorganisms beyond the well-documented antimicrobial activity of Ag+. Here, we study the effects of citrate- (d = 17.5 ± 9.4 nm) and 11-mercaptoundecanoic acid (d = 38.8 ± 3.6 nm)-capped silver nanoparticles on microorganisms belonging to various genera. The antimicrobial effect of Ag+ was distinguished from that of nanosilver by monitoring microbial growth in the presence and absence of nanoparticles and by careful comparison of the responses of equimolar silver nitrate solution. The results show that when using equimolar silver solutions, silver nitrate has higher toxic potential on all microorganisms than both nanoparticles tested. Furthermore, some microorganisms are more susceptible to silver than others and the choice of capping agent is relevant in the toxicity. Atomic force microscopy disclosed that AgNO3 had a destructive effect on algae. The antimicrobial activity of nanosilver could be exploited to prevent microbial colonization of medical devices and to determine the fate of nanoparticles in the environment.

98 citations


Journal ArticleDOI
TL;DR: In this article, a simple technique for preparation of colloid solution of metal nanoparticles in polyethylene glycol (PEG)/H2O is described, which can be used without application of chemical reactions, stabilizers, or reducing agents.
Abstract: In this study, a simple technique for preparation of colloid solution of metal nanoparticles in polyethylene glycol (PEG)/H2O is described. By this technique, stable colloidal metal solutions can be prepared ready for use without application of chemical reactions, stabilizers, or reducing agents. The nanoparticles are created by direct sputtering of metal into PEG. The influence of sputter conditions and the concentration of PEG/H2O on the properties of nanoparticles was studied. The nanoparticles were characterized by transmission electron microscopy, atomic absorption spectrometry, dynamic light scattering, and UV–Vis spectroscopy. UV–Vis spectra of gold nanoparticle solution exhibit localized surface plasmon resonance characteristic peaks located in the region 513–560 nm (PEG/H2O—1/1), 509–535 nm (PEG/H2O—1/9), and for silver nanoparticles in the region from 401 to 421 nm. Silver nanoparticles have a broader size distribution compared with gold ones. An appropriate choice of concentration, mixing, and deposition conditions allows preparing the stable solution of gold or silver nanoparticles.

Journal ArticleDOI
TL;DR: These initial epidemiological studies of workers’ exposure to ENMs (<100 nm) are reviewed and characterized for their study designs, findings, and limitations, and provide insight into where ENM workers are experiencing potentially adverse effects that might be related to ENM exposures.
Abstract: The results of early animal studies of engineered nanomaterials (ENMs) and air pollution epidemiology suggest that it is important to assess the health of ENM workers. Initial epidemiological studies of workers’ exposure to ENMs (<100 nm) are reviewed and characterized for their study designs, findings, and limitations. Of the 15 studies, 11 were cross-sectional, 4 were longitudinal (1 was both cross-sectional and longitudinal in design), and 1 was a descriptive pilot study. Generally, the studies used biologic markers as the dependent variables. All 11 cross-sectional studies showed a positive relationship between various biomarkers and ENM exposures. Three of the four longitudinal studies showed a negative relationship; the fourth showed positive findings after a 1-year follow-up. Each study considered exposure to ENMs as the independent variable. Exposure was assessed by mass concentration in 10 studies and by particle count in six studies. Six of them assessed both mass and particle concentrations. Some of the studies had limited exposure data because of inadequate exposure assessment. Generally, exposure levels were not very high in comparison to those in human inhalation chamber studies, but there were some exceptions. Most studies involved a small sample size, from 2 to 258 exposed workers. These studies represent the first wave of epidemiological studies of ENM workers. They are limited by small numbers of participants, inconsistent (and in some cases inadequate) exposure assessments, generally low exposures, and short intervals between exposure and effect. Still, these studies are a foundation for future work; they provide insight into where ENM workers are experiencing potentially adverse effects that might be related to ENM exposures.

Journal ArticleDOI
TL;DR: In this paper, the authors studied the relationship between Zn bioavailability in ZnO nanoparticle (NP)-spiked soil and the implications to crops, and found that Zn nanoparticles exerted dose-dependent effects on maize growth and nutrition, photosynthetic pigments, and root activity (dehydrogenase).
Abstract: Little is known about the relationships between Zn bioavailability in ZnO nanoparticle (NP)-spiked soil and the implications to crops. The present pot culture experiment studied Zn bioavailability in soil spiked with different doses of ZnO NPs, using the diethylenetriaminepentaacetic acid (DTPA) extraction method, as well as the toxicity and Zn accumulation in maize plants. Results showed that ZnO NPs exerted dose-dependent effects on maize growth and nutrition, photosynthetic pigments, and root activity (dehydrogenase), ranging from stimulatory (100–200 mg/kg) through to neutral (400 mg/kg) and toxic effect (800–3200 mg/kg). Both Zn concentration in shoots and roots correlated positively (P < 0.01) with ZnO NPs dose and soil DTPA-extractable Zn concentration. The BCF of Zn in shoots and roots ranged from 1.02 to 3.83 when ZnO NPs were added. In most cases, the toxic effects on plants elicited by ZnO NPs were overall similar to those caused by bulk ZnO and soluble Zn (ZnSO4) at the same doses, irrespective of some significant differences suggesting a higher toxicity of ZnO NPs. Oxidative stress in plants via superoxide free radical production was induced by ZnO NPs at 800 mg/kg and above, and was more severe than the same doses of bulk ZnO and ZnSO4. Although significantly lower compared to bulk ZnO and ZnSO4, at least 16 % of the Zn from ZnO NPs was converted into DTPA-extractable (bioavailable) forms. The dissolved Zn2+ from ZnO NPs may make a dominant contribution to their phytotoxicity. Although low amounts of ZnO NPs exhibited some beneficial effects, the accumulation of Zn from ZnO NPs into maize tissues could pose potential health risks for both plants and human.

Journal ArticleDOI
TL;DR: In this paper, the authors reported the synthesis of pure and Cu-doped ZnO nanorods for antibacterial and photocatalytic applications by simple, low cost mechanical-assisted thermal decomposition process.
Abstract: The present study reports the synthesis of pure and Cu-doped ZnO nanorods for antibacterial and photocatalytic applications. The samples were synthesized by simple, low cost mechanical-assisted thermal decomposition process. The synthesized materials were characterized by scanning electron microscopy, UV–Visible spectroscopy, and photoluminescence studies. The antibacterial activity of characterized samples was determined against Gram-positive bacteria such as Staphylococcus aureus and Streptococcus pyogenes and Gram-negative bacteria such as Escherichia coli using shake flask method with respect to time. The significant antibacterial activity was perceived from scanning electron micrographs that clearly revealed bacterial cell lysis resulting in the release of cytoplasmic content followed by cell death. The degradation of methylene blue was used as a model organic dye for photocatalytic activity. The present study demonstrates the superior photocatalytic and antibacterial activity of Cu-doped ZnO nanorods with respect to pure ZnO nanorods.

Journal ArticleDOI
TL;DR: In this article, a method for the synthesis of copper nanoparticles, which are poised to replace silver nanoparticles in some application areas of printed electronics, was presented, which offers three advantages: the copper loading in the synthesis reaction can be as high as 1M, offering high productivity in large-scale production.
Abstract: This study presents a method for the synthesis of copper nanoparticles, which are poised to replace silver nanoparticles in some application areas of printed electronics. This method offers three advantages. Firstly, copper loading in the synthesis reaction can be as high as 1 M, offering high productivity in large-scale production. Secondly, the size of the copper nanoparticles can be controlled from 12 to 99 nm. Thirdly, the surface polarity of the particles can be modified. Thus, a tailor-made product can be synthesized. The synthesis of copper nanoparticles coated with various capping agents, including dodecanethiol, lauric acid, nonanoic acid, polyacrylic acid, and polyvinyl pyrrolidone, was demonstrated. The nonanoic acid-coated copper nanoparticles were formulated as a screen-printing conductive paste. The particles were readily dispersed in terpineol, and the paste could be screen printed onto flexible polyester. The electrical resistivity of patterns after a low-temperature (120 °C) sintering treatment was around 5.8 × 10−5 Ω cm.

Journal ArticleDOI
Yangpeng Dou, Junjun Peng, Wei Li, Li Ming, Huihong Liu, Hanmin Zhang1 
TL;DR: In this article, the reducibility of GO was investigated by analyzing the influence factors such as pH, duration, reaction temperature, and the weight ratio of AgNO3 and GO in the AgNP/GO nanocomposite mixture, which were evaluated by the UV-vis absorption spectroscopy.
Abstract: Silver nanoparticles/graphene oxide (AgNPs/GO) nanocomposites were prepared in a solution of AgNO3 and GO. The GO serves not only as a reductant but also as a substrate to support the as-reduced silver nanoparticles. The reducibility of GO was investigated by analyzing the influence factors such as pH, duration, the reaction temperature, and the weight ratio of AgNO3 and GO in the AgNP/GO nanocomposite mixture, which were evaluated by the UV–vis absorption spectroscopy. The results demonstrated that Ag nanoparticles with an average diameter of 5–10 nm were uniformly dispersed on the surface of GO nanosheets under the optimum synthesis conditions of pH between 8 and 11, weight ratio of AgNO3 and GO between 55 % and 60 %, and at 80 °C for 6 h. Moreover, the obtained AgNPs/GO nanocomposites exhibit good electrocatalytic activity for the reduction of p-nitrophenol to 4-(hydroxyamino) phenol.

Journal ArticleDOI
TL;DR: In this article, the effects of storage conditions such as relative humidity and physical loading on the dustiness of five inorganic metal oxide nanostructured powder materials were investigated using a down-scaled EN15051 rotating drum.
Abstract: Dustiness testing using a down-scaled EN15051 rotating drum was used to investigate the effects of storage conditions such as relative humidity and physical loading on the dustiness of five inorganic metal oxide nanostructured powder materials The tests consisted of measurements of gravimetrical respirable dustiness index and particle size distributions Water uptake of the powders during 7 days of incubation was investigated as an explanatory factor of the changes Consequences of these varying storage conditions in exposure modelling were tested using the control banding and risk management tool NanoSafer Drastic material-specific effects on powder respirable dustiness index were observed with the change in TiO2 from 30 % RH (639 mg/kg) to 50 % RH (15 mg/kg) All five tested materials indicate a decreasing dustiness index with relative humidity increasing from 30 to 70 % RH Test of powder water uptake showed an apparent link with the decreasing dustiness index Effects of powder compaction appeared more material specific with both increasing and decreasing dustiness indices observed as an effect of compaction Tests of control banding exposure models using the measured dustiness indices in three different exposure scenarios showed that in two of the tested materials, one 20 % change in RH changed the exposure banding from the lowest level to the highest The study shows the importance of powder storage conditions prior to tests for classification of material dustiness indices It also highlights the importance of correct storage information and relative humidity and expansion of the dustiness test conditions specifically, when using dustiness indices as a primary parameter for source strength in exposure assessment

Journal ArticleDOI
TL;DR: In this article, the structural, compositional, and optical properties of the NPs were characterized by X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscope, energy-dispersive x-ray spectroscopy, micro Raman and Fourier transform infrared spectrograms, N2 adsorption-desorption isotherms, and UV-Vis diffuse reflectance spectrographs.
Abstract: CuS nanoparticles (NPs) of few nanometers in size were prepared by a wet chemical method. The structural, compositional, and optical properties of the NPs were characterized by X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, micro Raman and Fourier transform infrared spectroscopy, N2 adsorption–desorption isotherms, and UV–Vis diffuse reflectance spectroscopy. The XRD pattern proved the presence of hexagonal phase of CuS particles which was further supported by Raman spectrum. The estimated band gap energy of 2.05 eV for the slightly sulfur-rich CuS NPs is relatively larger than that of bulk CuS (1.85 eV), indicating the small size effect. As-prepared NPs showed excellent photocatalytic activity for the degradation of methylene blue (MB) under visible light. The surface-bound OH− ions at the CuS nanostructures help adsorb MB molecules facilitating their degradation process under visible light illumination. The studies presented in this paper suggest that the synthesized CuS NPs are promising, efficient, stable, and visible-light-sensitive photocatalyst for the remediation of wastewater polluted by chemically stable azo dyes such as MB.

Journal ArticleDOI
TL;DR: It is found that the cell death response to photothermal therapy was dependent on the GNR localization, and it was demonstrated that nanorods targeted to the perinuclear region irradiated at 37.5 W/cm2 laser fluence rate led to maximum cell destruction with the ‘cleaner’ method of apoptosis, at similar percentages as other anti-cancer targeted therapies.
Abstract: Current cancer therapies can cause significant collateral damage due to a lack of specificity and sensitivity. Therefore, we explored the cell death pathway response to gold nanorod (GNR)-mediated photothermal therapy as a highly specific cancer therapeutic to understand the role of apoptosis and necrosis during intense localized heating. By developing this, we can optimize photothermal therapy to induce a maximum of ‘clean’ cell death pathways, namely apoptosis, thereby reducing external damage. GNRs were targeted to several subcellular localizations within colorectal tumor cells in vitro, and the cell death pathways were quantitatively analyzed after photothermal therapy using flow cytometry. In this study, we found that the cell death response to photothermal therapy was dependent on the GNR localization. Furthermore, we demonstrated that nanorods targeted to the perinuclear region irradiated at 37.5 W/cm2 laser fluence rate led to maximum cell destruction with the ‘cleaner’ method of apoptosis, at similar percentages as other anti-cancer targeted therapies. We believe that this indicates the therapeutic potential for GNR-mediated photothermal therapy to treat cancer effectively without causing damage to surrounding tissue.

Journal ArticleDOI
TL;DR: This research applied systematic review methodology to synthesise current knowledge regarding societal acceptance or rejection of nanotechnology applied to agri-food production to gain an overall picture of consumer responses to nan technology applied to food production.
Abstract: Consumer's attitudes to, and acceptance of, emerging technologies and their applications, are important determinants of their successful implemen- tation and commercialisation. Understanding the range of socio-psychological, cultural and affective factors which may influence consumer responses to applica- tions of nanotechnology will help ''fine-tune'' the development of consumer products in line with their expectations and preferences. This is particularly true of applications in the food area, where consumer concerns about technologies applied to food production may be elevated. This research applied systematic review methodology to synthesise current knowledge regard- ing societal acceptance or rejection of nanotechnology applied to agri-food production. The objective was to aggregate knowledge derived from different research areas to gain an overall picture of consumer responses to nanotechnology applied to food production. Relevant electronic databases of peer-reviewed literature were searched from the earliest date available, for peer- reviewed papers which reported primary empirical data on consumer and expert acceptance of agri-food nanotechnology, using a formal systematic review protocol. Inclusion criteria for papers to be included in the review were: empirical peer-reviewed papers written in English; a population sample of adults aged 18 years and over used in the research; a research focus on consumer and expert acceptance of agri-food nanotechnology; and research on attitudes towards, and willingness to pay for, different applications of agri- food nanotechnology. Two researchers independently appraised the papers using NVivo 10 QSR software. Studies examining consumer and expert acceptance were thematically analysed, and key information was collated. The results were synthesised in order to identify trends in information relevant to consumer acceptance of nanotechnology applied to food produc- tion. Eight key themes were identified from the 32 papers which were extracted from the literature. These themes were applied to understand the determinants of consumer acceptance of agri-food nanotechnology. Nanotechnology is more likely to be accepted by consumers when applied to development of novel packaging with distinct benefits rather than when integrated directly into agri-food products. Trust and confidence in agri-food nanotechnology and its gover- nance need to be fostered through transparent regulation and development of societally beneficial impacts to increase consumer acceptance.

Journal ArticleDOI
TL;DR: In this article, the significance of metal oxide nanoparticles, especially zinc oxide and titanium dioxide nanoparticles as supplementary antimicrobials for controlling oral infections and biofilm formation is discussed.
Abstract: Oral cavity is inhabited by more than 25,000 different bacterial phylotypes; some of them cause systemic infections in addition to dental and periodontal diseases. Emergence of multiple antibiotic resistance among these bacteria necessitates the development of alternative antimicrobial agents that are safe, stable, and relatively economic. This review focuses on the significance of metal oxide nanoparticles, especially zinc oxide and titanium dioxide nanoparticles as supplementary antimicrobials for controlling oral infections and biofilm formation. Indeed, the ZnO NPs and TiO2 NPs have exhibited significant antimicrobial activity against oral bacteria at concentrations which is not toxic in in vivo toxicity assays. These nanoparticles are being produced at an industrial scale for use in a variety of commercial products including food products. Thus, the application of ZnO and TiO2 NPs as nanoantibiotics for the development of mouthwashes, dental pastes, and other oral hygiene materials is envisaged. It is also suggested that these NPs could serve as healthier, innocuous, and effective alternative for controlling both the dental biofilms and oral planktonic bacteria with lesser side effects and antibiotic resistance.

Journal ArticleDOI
TL;DR: In this paper, the potential environmental, health and safety impacts of coatings containing nanomaterials using Life Cycle Assessment (LCA) were evaluated using three different paint compositions.
Abstract: Nanotechnologies are expected to hold considerable potential for the development of new materials in the construction sector. Up to now the environmental benefits and risks of products containing manufactured nanomaterials (MNM) have been quantified only to a limited extent. This study aims to assess the potential environmental, health and safety impacts of coatings containing MNM using Life-cycle assessment: Do paints containing MNM result in a better environmental performance than paints not containing MNM? The study shows that the results depend on a number of factors: (i) The MNM have to substitute an (active) ingredient of the initial paint composition and not simply be an additional ingredient. (ii) The new composition has to extend the lifetime of the paint for such a time period that the consumption of paint along the life cycle of a building is reduced. (iii) Releases of MNM have to be reduced to the lowest level possible (in particular by dumping unused paint together with the packaging). Only when all these boundary conditions are fulfilled, which is the case only for one of the three paint systems examined, is an improved environmental performance of the MNM-containing paint possible for the paint compositions examined in this study.

Journal ArticleDOI
TL;DR: In this article, the authors present the first available information on the influence of GFMs on soil and water environment as well as identify the knowledge gaps and indicate the directions for the next generation of the original scientific investigations.
Abstract: Recently, graphene family materials (GFMs) have been introduced among all fields of science and still get numerous attention. Also, the applicability of these materials in many areas makes them very attractive. GFMs have attracted both academic and industrial interest as they can produce a dramatic improvement in materials properties at very low filler content. The aim of this review is to identify, summarize, and present the first available information on the influence of GFMs on soil and water environment as well as identify the knowledge gaps and indicate the directions for the next generation of the original scientific investigations. The paper also presents our first preliminary impact assessment and potential pathways of GFMs distribution in the environment. We used as an example the reduced graphene oxide/Al2O3 nanocomposite (RGO/Al2O3) that has been previously designed and synthesized by us. Authors believe that further work should focus on improvement of characterization methodology applicable for ecotoxicity analyses and possible interactions between GFMs and different living ecosystems. Consequently, the potential impact of graphene and its derivatives on environmental health is a matter of academic interest. However, potential hazards sufficient for risk assessment and concerned with GFMs usage in consumer products first need to be investigated and identified. Further research should focus on gathering knowledge on GFMs properties for life cycle analyses, which still poses a great challenge for scientists.

Journal ArticleDOI
TL;DR: In this article, a Fe3O4@SiO2-graphene oxide (GO) composites were successfully fabricated by chemical binding of functional Fe 3O4 and GO and applied to immobilization of cellulase via covalent attachment.
Abstract: Fe3O4@SiO2–graphene oxide (GO) composites were successfully fabricated by chemical binding of functional Fe3O4@SiO2 and GO and applied to immobilization of cellulase via covalent attachment. The prepared composites were further characterized by transmission electron microscopy and Fourier transform infrared spectroscopy. Fe3O4 nanoparticles (NPs) were monodisperse spheres with a mean diameter of 17 ± 0.2 nm. The thickness of SiO2 layer was calculated as being 6.5 ± 0.2 nm. The size of Fe3O4@SiO2 NPs was 24 ± 0.3 nm, similar to that of Fe3O4@SiO2–NH2. Fe3O4@SiO2–GO composites were synthesized by linking of Fe3O4@SiO2–NH2 NPs to GO with the catalysis of EDC and NHS. The prepared composites were used for immobilization of cellulase. A high immobilization yield and efficiency of above 90 % were obtained after the optimization. The half-life of immobilized cellulase (722 min) was 3.34-fold higher than that of free enzyme (216 min) at 50 °C. Compared with the free cellulase, the optimal temperature of the immobilized enzyme was not changed; but the optimal pH was shifted from 5.0 to 4.0, and the thermal stability was enhanced. The immobilized cellulase could be easily separated and reused under magnetic field. These results strongly indicate that the cellulase immobilized onto the Fe3O4@SiO2–GO composite has potential applications in the production of bioethanol.

Journal ArticleDOI
TL;DR: In this paper, the structure and phase identification of nanocrystalline cobalt-doped bismuth ferrites were performed using X-ray diffraction (XRD) technique and the results confirm the formation of rhombohedral-distorted Perovskite structure with R3c symmetry.
Abstract: Nanocrystalline cobalt-doped bismuth ferrites with general formula of BiFe1−δ Co δ O3 (0 ≤ δ ≤ 0.1) have been synthesized using solution evaporation method. Structure and phase identification was performed with X-ray diffraction (XRD) technique. The results confirm the formation of rhombohedral-distorted Perovskite structure with R3c symmetry. A decrease in lattice parameters and an increase in X-ray density have been observed with increasing cobalt concentration in BiFeO3. Particle size determined by transmission electron microscope was in good agreement with XRD, i.e., 39 nm. Room-temperature coercivity and saturation magnetization of nanoparticles were increased up to 7.5 % of cobalt doping. Low-temperature magnetic measurements of selected sample showed increasing behavior in saturation magnetization, coercivity, effective magnetic moments, and anisotropy constant. An increase in coercivity with decrease in temperature followed theoretical model of Kneller’s law, while modified Bloch’s model was employed for saturation magnetization in temperature range of 5–300 K.

Journal ArticleDOI
TL;DR: The stability measurements indicate that the AST 50 suspensions in the presence of the background electrolyte at pH 3 and 6 are unstable; in an alkaline medium the mixed oxide suspensions exhibit the highest durability, which is a result of a large number of the negative charges on the AST50 surface.
Abstract: A new adsorbent consisting of fumed, mixed alumina, silica, and titania in various proportions (AST 50) was investigated. The studied material was prepared by chemical vapor deposition method. The diameter of AST 50 primary particles was equal to about 51 nm which denotes that it can be classified as a nanomaterial. In the presented paper, the adsorption properties of polyvinyl alcohol on the ternary oxide were investigated. The polymer macromolecules were characterized by two different molecular weights and degree of hydrolysis. The polymer adsorption reaches the maximum at pH 3 and decreases with the solution pH rise. The reduction of the adsorbed PVA macromolecules is related to the electrostatic repulsion forces occurring in the studied system. The AST 50 point of zero charge (pHpzc) obtained from the potentiometric titration is equal to 4.7. Due to the nonionic character of the analyzed macromolecular compound, the polymer attendance has an insignificant effect on the AST 50 surface charge density. In the case of the adsorbent particles zeta potential, the obtained dependencies are different in the absence and presence of PVA. The shift of the slipping plane and displacement of the counter-ions from Stern layer by the adsorbed polymer chains have the greatest effect on the ζ potential value. The stability measurements indicate that the AST 50 suspensions in the presence of the background electrolyte at pH 3 and 6 are unstable. In turn, in an alkaline medium the mixed oxide suspensions exhibit the highest durability, which is a result of a large number of the negative charges on the AST 50 surface. The addition of PVA 100 significantly improves the suspension stability at pH 3 and 6; at higher pH value, the polymer presence does not influence the system durability. It is related to the steric and electrosteric stabilization of the colloidal particles by the adsorbed polyvinyl alcohol macromolecules.

Journal ArticleDOI
TL;DR: The overall evidence from both in vivo and in vitro studies did not support that oral ingestion of nano- or larger particles of TiO2 via food would result in any significant internal exposure of the consumer to the nanoparticles.
Abstract: Certain food additives may contain a sizeable fraction of particles in the nanoscale. However, little is known about the fate, behaviour and toxicological effects of orally-ingested nanoparticles. This study investigated the uptake and biodistribution of nano- and larger-sized titanium dioxide (TiO2) using an in vitro model of gut epithelium and in vivo in rat. The results of the in vivo study showed that oral administration of 5 mg/kg body weight of TiO2 nano- or larger particles did not lead to any significant translocation of TiO2 (measured as titanium) either to blood, urine or to various organs in rat at any of the time intervals studied over a 96 h post-administration period. Different methods used for dispersing particles did not affect the uptake, and orally administered TiO2 was found excreted in the faeces over a period of time. The in vitro study provided further evidence for the lack of translocation of TiO2 across the gut epithelium model. The overall evidence from both in vivo and in vitro studies did not support that oral ingestion of nano- or larger particles of TiO2 via food would result in any significant internal exposure of the consumer to the nanoparticles. The dietary TiO2 nanoparticles are likely to be excreted in the faeces.

Journal ArticleDOI
TL;DR: In this paper, the authors developed Lycopene-loaded lipid-core nanocapsules (Lyc-LNCs) by the interfacial deposition of preformed poly(e-caprolactone) (PCL).
Abstract: The objective of this study was to develop lycopene-loaded lipid-core nanocapsules (Lyc-LNCs) by the interfacial deposition of preformed poly(e-caprolactone) (PCL). Lyc extract (93.9 %) was obtained from tomatoes, and the organic phase was prepared with polymer (PCL), caprylic/capric triglycerides, sorbitan monostearate, and Lyc in a mixture of acetone and ethanol under magnetic stirring at 40 °C. The organic phase was injected into an aqueous phase containing polysorbate 80, and the suspension was concentrated under reduced pressure. The formulation with a Lyc concentration of 85 µg/mL was characterized in terms of size distribution, zeta potential, encapsulation efficiency, pH, viscosity, and color. The Lyc-LNC formulation presented stable values for the z-average (193 ± 4.7 nm) and zeta potential (−11.5 ± 0.40 mV). Despite the lower pH, Lyc content, and color change of the suspension, the nanocapsules showed satisfactory stability, presenting around 50 % Lyc content after 14 days of storage at room temperature (25 °C).

Journal ArticleDOI
TL;DR: In this article, the effects of extracellular polymeric substances (EPS) from microbial community before directly interacting with bacterial cells on the stability and toxicity of engineered nanoparticles in aquatic environment were investigated.
Abstract: Stability of engineered nanoparticles in aquatic environment is an essential parameter to evaluate their fate, bioavailability, and potential toxic effects toward living organisms. As CuO NPs enter the wastewater systems, they will encounter extracellular polymeric substances (EPS) from microbial community before directly interacting with bacterial cells. EPS may play an important role in affecting the stability and the toxicity of CuO NPs in aquatic environment. In this study, the influences of flocculent sludge-derived EPS, as well as model protein (BSA) and natural polysaccharides (alginate) on the dissolution kinetics and colloidal stability of CuO NPs were investigated. Results showed that the presence of NOMs strongly suppressed CuO NPs aggregation, confirmed by DLS, zeta potentials, and TEM analysis. The enhanced stability of CuO NPs in the presence of EPS and alginate were attributed to the electrostatic combined with steric repulsion, while the steric-hindrance effect may be the predominant mechanism retarding nano-CuO aggregation for BSA. Higher degrees of copper release were achieved with the increasing concentrations of NOMs. EPS are more effective than alginate and BSA in releasing copper, probably due to the abundant functional groups and the excellent metal-binding capacity. The ratio of free-Cu2+/total dissolved Cu significantly decreased in the presence of EPS, indicating that EPS may affect the speciation and Cu bioavailability in aqueous environment. These results may be important for assessing the fate and transport behaviors of CuO NPs in the environment as well as for setting up usage regulation and treatment strategy.

Journal ArticleDOI
TL;DR: The synthesis and use of dual drug-loaded TQ and PTX NPs are proposed which exhibits enhanced anticancer activity and can additionally help to alleviate the toxic effects of PTX by lowering its effective dose.
Abstract: The present study highlights the beneficial synergistic blend of anticancer drug paclitaxel (PTX) and thymoquinone (TQ) in MCF-7 breast cancer cells. We aimed to augment the therapeutic index of PTX using a polymeric nanoparticle system loaded with PTX and TQ. PLGA nanoparticles encapsulating the two drugs, individually or in combination, were prepared by single emulsion solvent evaporation method. The formulated nanoparticles were homogenous with an overall negative charge and their size ranging between 200 and 300 nm. Entrapment efficiency of PTX and TQ in the dual drug-loaded nanoparticles was found to be 82.4 ± 2.18 and 65.8 ± 0.45 %, respectively. The release kinetics of PTX and TQ from the nanoparticles exhibited a biphasic pattern characterised by an initial burst, followed by a gradual and continuous release. The anticancer activity of nanoparticles encapsulating both the drugs was higher as compared to the free drugs in MCF-7 breast cancer cells. The combination index for the dual drug-loaded NPs was found to be 0.688 which is indicative of synergistic interaction. Thus, here, we propose the synthesis and use of dual drug-loaded TQ and PTX NPs which exhibits enhanced anticancer activity and can additionally help to alleviate the toxic effects of PTX by lowering its effective dose.