scispace - formally typeset
Search or ask a question

Showing papers in "Journal of the International Society of Sports Nutrition in 2010"


Journal ArticleDOI
TL;DR: The scientific literature does not support caffeine-induced diuresis during exercise, or any harmful change in fluid balance that would negatively affect performance, and the literature is equivocal when considering the effects of caffeine supplementation on strength-power performance.
Abstract: Position Statement: The position of The Society regarding caffeine supplementation and sport performance is summarized by the following seven points: 1.) Caffeine is effective for enhancing sport performance in trained athletes when consumed in low-to-moderate dosages (~3-6 mg/kg) and overall does not result in further enhancement in performance when consumed in higher dosages (≥ 9 mg/kg). 2.) Caffeine exerts a greater ergogenic effect when consumed in an anhydrous state as compared to coffee. 3.) It has been shown that caffeine can enhance vigilance during bouts of extended exhaustive exercise, as well as periods of sustained sleep deprivation. 4.) Caffeine is ergogenic for sustained maximal endurance exercise, and has been shown to be highly effective for time-trial performance. 5.) Caffeine supplementation is beneficial for high-intensity exercise, including team sports such as soccer and rugby, both of which are categorized by intermittent activity within a period of prolonged duration. 6.) The literature is equivocal when considering the effects of caffeine supplementation on strength-power performance, and additional research in this area is warranted. 7.) The scientific literature does not support caffeine-induced diuresis during exercise, or any harmful change in fluid balance that would negatively affect performance.

482 citations


Journal ArticleDOI
TL;DR: Ingesting tart cherry juice for 7 days prior to and during a strenuous running event can minimize post-run muscle pain.
Abstract: Long distance running causes acute muscle damage resulting in inflammation and decreased force production. Endurance athletes use NSAIDs during competition to prevent or reduce pain, which carries the risk of adverse effects. Tart cherries, rich in antioxidant and anti-inflammatory properties, may have a protective effect to reduce muscle damage and pain during strenuous exercise. This study aimed to assess the effects of tart cherry juice as compared to a placebo cherry drink on pain among runners in a long distance relay race. The design was a randomized, double blind, placebo controlled trial. Fifty-four healthy runners (36 male, 18 female; 35.8 ± 9.6 yrs) ran an average of 26.3 ± 2.5 km over a 24 hour period. Participants ingested 355 mL bottles of tart cherry juice or placebo cherry drink twice daily for 7 days prior to the event and on the day of the race. Participants assessed level of pain on a standard 100 mm Visual Analog Scale (VAS) at baseline, before the race, and after the race. While both groups reported increased pain after the race, the cherry juice group reported a significantly smaller increase in pain (12 ± 18 mm) compared to the placebo group (37 ± 20 mm) (p < .001). Participants in the cherry juice group were more willing to use the drink in the future (p < 0.001) and reported higher satisfaction with the pain reduction they attributed to the drink (p < 0.001). Ingesting tart cherry juice for 7 days prior to and during a strenuous running event can minimize post-run muscle pain.

133 citations


Journal ArticleDOI
TL;DR: Findings indicate a moderate dose of caffeine may be sufficient for enhancing strength performance in resistance-trained women.
Abstract: Research has indicated that low-to-moderate dosages of caffeine supplementation are ergogenic for sustained endurance efforts as well as high-intensity exercise. The effects of caffeine supplementation on strength-power performance are equivocal, with some studies indicating a benefit and others demonstrating no change in performance. The majority of research that has examined the effects of caffeine supplementation on strength-power performance has been carried out in both trained and untrained men. Therefore, the purpose of this study was to determine the acute effects of caffeine supplementation on strength and muscular endurance in resistance-trained women. In a randomized manner, 15 women consumed caffeine (6 mg/kg) or placebo (PL) seven days apart. Sixty min following supplementation, participants performed a one-repetition maximum (1RM) barbell bench press test and repetitions to failure at 60% of 1RM. Heart rate (HR) and blood pressure (BP) were assessed at rest, 60 minutes post-consumption, and immediately following completion of repetitions to failure. Repeated measures ANOVA indicated a significantly greater bench press maximum with caffeine (p ≤ 0.05) (52.9 ± 11.1 kg vs. 52.1 ± 11.7 kg) with no significant differences between conditions in 60% 1RM repetitions (p = 0.81). Systolic blood pressure was significantly greater post-exercise, with caffeine (p < 0.05) (116.8 ± 5.3 mmHg vs. 112.9 ± 4.9 mmHg). These findings indicate a moderate dose of caffeine may be sufficient for enhancing strength performance in resistance-trained women.

118 citations


Journal ArticleDOI
TL;DR: 6 wk of supplementation with FO significantly increased lean mass and decreased fat mass and were significantly correlated with a reduction in salivary cortisol following FO treatment.
Abstract: To determine the effects of supplemental fish oil (FO) on resting metabolic rate (RMR), body composition, and cortisol production in healthy adults. A total of 44 men and women (34 ± 13y, mean+SD) participated in the study. All testing was performed first thing in the morning following an overnight fast. Baseline measurements of RMR were measured using indirect calorimetry using a facemask, and body composition was measured using air displacement plethysmography. Saliva was collected via passive drool and analyzed for cortisol concentration using ELISA. Following baseline testing, subjects were randomly assigned in a double blind manner to one of two groups: 4 g/d of Safflower Oil (SO); or 4 g/d of FO supplying 1,600 mg/d eicosapentaenoic acid (EPA) and 800 mg/d docosahexaenoic acid (DHA). All tests were repeated following 6 wk of treatment. Pre to post differences were analyzed using a treatment X time repeated measures ANOVA, and correlations were analyzed using Pearson's r. Compared to the SO group, there was a significant increase in fat free mass following treatment with FO (FO = +0.5 ± 0.5 kg, SO = -0.1 ± 1.2 kg, p = 0.03), a significant reduction in fat mass (FO = -0.5 ± 1.3 kg, SO = +0.2 ± 1.2 kg, p = 0.04), and a tendency for a decrease in body fat percentage (FO = -0.4 ± 1.3% body fat, SO = +0. 3 ± 1.5% body fat, p = 0.08). No significant differences were observed for body mass (FO = 0.0 ± 0.9 kg, SO = +0.2 ± 0.8 kg), RMR (FO = +17 ± 260 kcal, SO = -62 ± 184 kcal) or respiratory exchange ratio (FO = -0.02 ± 0.09, SO = +0.02 ± 0.05). There was a tendency for salivary cortisol to decrease in the FO group (FO = -0.064 ± 0.142 μg/dL, SO = +0.016 ± 0.272 μg/dL, p = 0.11). There was a significant correlation in the FO group between change in cortisol and change in fat free mass (r = -0.504, p = 0.02) and fat mass (r = 0.661, p = 0.001). 6 wk of supplementation with FO significantly increased lean mass and decreased fat mass. These changes were significantly correlated with a reduction in salivary cortisol following FO treatment.

96 citations


Journal ArticleDOI
TL;DR: In this paper, the basis for a weight control program for judo competitions is provided, as follows: competition should begin within 1 hour after weigh-in, at the latest; each athlete is allowed to be weighed-in only once; rapid weight loss as well as artificial rehydration (ie, saline infusion) methods are prohibited during the entire competition day; athletes should pass the hydration test to get their weighin validated; an individual minimum competitive weight (male athletes competing at no less than 7% and females at no more than 12% of body fat) should be
Abstract: Judo competitions are divided into weight classes However, most athletes reduce their body weight in a few days before competition in order to obtain a competitive advantage over lighter opponents To achieve fast weight reduction, athletes use a number of aggressive nutritional strategies so many of them place themselves at a high health-injury risk In collegiate wrestling, a similar problem has been observed and three wrestlers died in 1997 due to rapid weight loss regimes After these deaths, the National Collegiate Athletic Association had implemented a successful weight management program which was proven to improve weight management behavior No similar program has ever been discussed by judo federations even though judo competitors present a comparable inappropriate pattern of weight control In view of this, the basis for a weight control program is provided in this manuscript, as follows: competition should begin within 1 hour after weigh-in, at the latest; each athlete is allowed to be weighed-in only once; rapid weight loss as well as artificial rehydration (ie, saline infusion) methods are prohibited during the entire competition day; athletes should pass the hydration test to get their weigh-in validated; an individual minimum competitive weight (male athletes competing at no less than 7% and females at no less than 12% of body fat) should be determined at the beginning of each season; athletes are not allowed to compete in any weight class that requires weight reductions greater than 15% of body weight per week In parallel, educational programs should aim at increasing the athletes', coaches' and parents' awareness about the risks of aggressive nutritional strategies as well as healthier ways to properly manage body weight

93 citations


Journal ArticleDOI
TL;DR: Consumption of theaflavin-enriched black tea extract led to improved recovery and a reduction in oxidative stress and DOMS responses to acute anaerobic intervals and an improved rate of recovery can benefit all individuals engaging in high intensity, an aerobic exercise.
Abstract: Muscle soreness and decreased performance often follow a bout of high-intensity exercise. By reducing these effects, an athlete can train more frequently and increase long-term performance. The purpose of this study is to examine whether a high-potency, black tea extract (BTE) alters the delayed onset muscle soreness (DOMS), oxidative stress, inflammation, and cortisol (CORT) responses to high-intensity anaerobic exercise. College-age males (N = 18) with 1+ yrs of weight training experience completed a double-blind, placebo-controlled, crossover study. Subjects consumed the BTE (1,760 mg BTE·d-1) or placebo (PLA) for 9 days. Each subject completed two testing sessions (T1 & T2), which occurred on day 7 of the intervention. T1 & T2 consisted of a 30 s Wingate Test plus eight 10 s intervals. Blood samples were obtained before, 0, 30 & 60 min following the interval sessions and were used to analyze the total to oxidized glutathione ratio (GSH:GSSG), 8-isoprostane (8-iso), CORT, and interleukin 6 (IL-6) secretion. DOMS was recorded at 24 & 48 h post-test using a visual analog scale while BTE or PLA continued to be administered. Significance was set at P < 0.05. Compared to PLA, BTE produced significantly higher average peak power (P = 0.013) and higher average mean power (P = 0.067) across nine WAnT intervals. BTE produced significantly lower DOMS compared to PLA at 24 h post test (P < 0.001) and 48 h post test (P < 0.001). Compared to PLA, BTE had a slightly higher GSH:GSSG ratio at baseline which became significantly higher at 30 and 60 min post test (P < 0.002). AUC analysis revealed BTE to elicit significantly lower GSSG secretion (P = 0.009), significantly higher GSH:GSSG ratio (P = 0.001), and lower CORT secretion (P = 0.078) than PLA. AUC analysis did not reveal a significant difference in total IL-6 response (P = 0.145) between conditions. Consumption of theaflavin-enriched black tea extract led to improved recovery and a reduction in oxidative stress and DOMS responses to acute anaerobic intervals. An improved rate of recovery can benefit all individuals engaging in high intensity, anaerobic exercise as it facilitates increased frequency of exercise.

81 citations


Journal ArticleDOI
TL;DR: The major finding of this investigation was that whey protein isolate supplementation attenuated the impairment in isometric and isokinetic muscle forces during recovery from exercise-induced muscle injury.
Abstract: Background We examined the effects of short-term consumption of whey protein isolate on muscle proteins and force recovery after eccentrically-induced muscle damage in healthy individuals.

79 citations


Journal ArticleDOI
TL;DR: These results demonstrated improvements in VO2max, CV, and LBM when GT is combined with HIIT, and three weeks of HIIT alone also augmented anaerobic running performance,VO2max and body composition.
Abstract: A randomized, single-blinded, placebo-controlled, parallel design study was used to examine the effects of a pre-workout supplement combined with three weeks of high-intensity interval training (HIIT) on aerobic and anaerobic running performance, training volume, and body composition. Twenty-four moderately-trained recreational athletes (mean ± SD age = 21.1 ± 1.9 yrs; stature = 172.2 ± 8.7 cm; body mass = 66.2 ± 11.8 kg, VO2max = 3.21 ± 0.85 l·min-1, percent body fat = 19.0 ± 7.1%) were assigned to either the active supplement (GT, n = 13) or placebo (PL, n = 11) group. The active supplement (Game Time®, Corr-Jensen Laboratories Inc., Aurora, CO) was 18 g of powder, 40 kcals, and consisted of a proprietary blend including whey protein, cordyceps sinensis, creatine, citrulline, ginseng, and caffeine. The PL was also 18 g of powder, 40 kcals, and consisted of only maltodextrin, natural and artificial flavors and colors. Thirty minutes prior to all testing and training sessions, participants consumed their respective supplements mixed with 8-10 oz of water. Both groups participated in a three-week HIIT program three days per week, and testing was conducted before and after the training. Cardiovascular fitness (VO2max) was assessed using open circuit spirometry (Parvo-Medics TrueOne® 2400 Metabolic Measurement System, Sandy, UT) during graded exercise tests on a treadmill (Woodway, Pro Series, Waukesha, WI). Also, four high-speed runs to exhaustion were conducted at 110, 105, 100, and 90% of the treadmill velocity recorded during VO2max, and the distances achieved were plotted over the times-to-exhaustion. Linear regression was used to determine the slopes (critical velocity, CV) and y-intercepts (anaerobic running capacity, ARC) of these relationships to assess aerobic and anaerobic performances, respectively. Training volumes were tracked by summing the distances achieved during each training session for each subject. Percent body fat (%BF) and lean body mass (LBM) were assessed with air-displacement plethysmography (BOD POD®, Life Measurement, Inc., Concord, CA). Both GT and PL groups demonstrated a significant (p = 0.028) increase in VO2max from pre- to post-training resulting in a 10.3% and 2.9% improvement, respectively. CV increased (p = 0.036) for the GT group by 2.9%, while the PL group did not change (p = 0.256; 1.7% increase). ARC increased for the PL group by 22.9% and for the GT group by 10.6%. Training volume was 11.6% higher for the GT versus PL group (p = 0.041). %BF decreased from 19.3% to 16.1% for the GT group and decreased from 18.0% to 16.8% in the PL group (p = 0.178). LBM increased from 54.2 kg to 55.4 kg (p = 0.035) for the GT group and decreased from 52.9 kg to 52.4 kg in the PL group (p = 0.694). These results demonstrated improvements in VO2max, CV, and LBM when GT is combined with HIIT. Three weeks of HIIT alone also augmented anaerobic running performance, VO2max and body composition.

72 citations


Journal ArticleDOI
TL;DR: Post-exercise CM provided similar muscle recovery responses to an isocaloric CHO beverage during four-days of ITD, and attenuated CK levels observed with CM have functional significance during more demanding periods of training.
Abstract: The efficacy of chocolate milk (CM) as a recovery beverage following a period of increased training duration (ITD) was studied in intercollegiate soccer players. 13 subjects completed one week of normal 'baseline' training followed by four days of ITD. After each day of ITD, subjects received either a high-carbohydrate (504 kcal; CHO: 122 g; 2 g Fat) or isocaloric CM (504 kcal; 84 g CHO; 28 g Pro; 7 g Fat) recovery beverage. Serum creatine kinase (CK), myoglobin (Mb), muscle soreness, fatigue ratings and isometric quadriceps force (MVC) were obtained prior to ITD, and following 2- and 4-days of ITD. Performance tests (T-drill, vertical jump) were performed within training sessions. Treatments were administered in a randomly counterbalanced protocol, and subjects repeated the procedures with the alternate beverage following a two-week washout period. Mean daily training time and HR increased (p < 0.05) between baseline training and ITD, with no differences between treatments. No treatment*time effects were observed for Mb, muscle soreness, fatigue ratings and MVC. However, serum CK was significantly lower (p < 0.05) following four days of ITD with CM (316.9 ± 188.3 U·L-1) compared to CHO (431.6 ± 310.8 U·L-1). No treatment differences were observed for the performance tests. Post-exercise CM provided similar muscle recovery responses to an isocaloric CHO beverage during four-days of ITD. Future studies should investigate if the attenuated CK levels observed with CM have functional significance during more demanding periods of training.

71 citations


Journal ArticleDOI
TL;DR: Already a 4-week HICA supplementation of 1.5 g a day leads to small increases in muscle mass during an intensive training period in soccer athletes.
Abstract: Alfa-Hydroxy-isocaproic acid (HICA) is an end product of leucine metabolism in human tissues such as muscle and connective tissue. According to the clinical and experimental studies, HICA can be considered as an anti-catabolic substance. The present study investigated the effects of HICA supplementation on body composition, delayed onset of muscle soreness (DOMS) and physical performance of athletes during a training period. Fifteen healthy male soccer players (age 22.1+/-3.9 yr) volunteered for the 4-week double-blind study during an intensive training period. The subjects in the group HICA (n = 8) received 583 mg of sodium salt of HICA (corresponding 500 mg of HICA) mixed with liquid three times a day for 4 weeks, and those in the group PLACEBO (n = 7) received 650 mg of maltodextrin mixed with liquid three times a day for the same period. According to a weekly training schedule, they practiced soccer 3 - 4 times a week, had strength training 1 - 2 times a week, and had one soccer game during the study. The subjects were required to keep diaries on training, nutrition, and symptoms of DOMS. Body composition was evaluated with a dual-energy X-ray absorptiometry (DXA) before and after the 4-week period. Muscle strength and running velocity were measured with field tests. As compared to placebo, the HICA supplementation increased significantly body weight (p < 0.005) and whole lean body mass (p < 0.05) while fat mass remained constant. The lean body mass of lower extremities increased by 400 g in HICA but decreased by 150 g in PLACEBO during the study. This difference between the groups was significant (p < 0.01). The HICA supplementation decreased the whole body DOMS symptoms in the 4th week of the treatment (p < 0.05) when compared to placebo. Muscle strength and running velocity did not differ between the groups. Already a 4-week HICA supplementation of 1.5 g a day leads to small increases in muscle mass during an intensive training period in soccer athletes.

70 citations


Journal ArticleDOI
TL;DR: The potential for bias in selecting a measure of TEF from data within- and between-groups and, O2 uptake vs. energy expenditure differences between drinks is suggested.
Abstract: We investigated the thermic effect of feeding (TEF) equicaloric (1004.16 kJ) portions of randomly provided fresh squeezed orange juice (17.45 oz) and Protein RushTM (40g protein, 17 oz). Eight subjects (5 women, 3 men; 25.8 ± 9.2 yrs, 174.9 ± 12.4 cm, 71.5 ± 17.5 kg) reported to the lab on subsequent mornings and underwent 30-minutes of resting metabolic rate testing, followed by 2-minutes of drink ingestion, followed by 60-minutes of supine rest. Data were collected via a metabolic cart and ventilated hood. Resting data were subtracted from all post-ingestion measures. Within groups the rate of O2 uptake (l min-1) increased significantly for protein (+29%, p = 0.03) but not for orange juice (+21%, p = 0.11); when expressed as ml . kg-1 min-1, both groups had significant increases (p < 0.005). Between groups O2 uptake measurements over the 1-hour period revealed a 21% difference between orange juice (2.66 ± 0.6 liters) and protein (3.36 ± 0.9 liters) that did not reach statistical significance (p = 0.10). Energy expenditure (kJ) determined via the respiratory exchange ratio (RER) revealed orange juice at (60.8 ± 10.1 kJ) and protein (63.7 ± 20.0 kJ) were 5% different, also non-significant (p = 0.72). The RER averaged over the 60-min TEF period was significantly different between orange juice (0.868 ± 0.07) and protein (0.773 ± 0.04) (p = 0.005). Sample size calculations indicate that 14 subjects would reveal statistical significance for O2 uptake yet 163 subjects would be required for energy expenditure differences between drinks. We suggest the potential for bias in selecting a measure of TEF from data within- and between-groups and, O2 uptake vs. energy expenditure.

Journal ArticleDOI
TL;DR: βA supplementation for 28 days enhanced sub-maximal endurance performance by delaying OBLA, however, βA supplemented individuals had a reduced aerobic capacity as evidenced by the decrease in VO2max values post supplementation.
Abstract: Background β-Alanine (βA) has been shown to improve performance during cycling. This study was the first to examine the effects of βA supplementation on the onset of blood lactate accumulation (OBLA) during incremental treadmill running.

Journal ArticleDOI
TL;DR: Results of this study indicate that the supplement Amino Impact™ can significantly increase time to exhaustion during a moderate intensity endurance run and improve subjective feelings of focus, energy and fatigue.
Abstract: Background: The purpose of this study was to examine the effect of a commercially available energy drink on time to exhaustion during treadmill exercise. In addition, subjective measures of energy, focus, and fatigue were examined Methods: Fifteen subjects (9 men and 6 women; 20.9 ± 1.0 y; 172.1 ± 9.1 cm; 71.0 ± 9.4 kg; 16.9 ± 9.7% body fat) underwent two testing sessions administered in a randomized, double-blind fashion. Subjects reported to the laboratory in a 3-hr post-absorptive state and were provided either the supplement (SUP; commercially marketed as Amino Impact™) or placebo (P). During each laboratory visit subjects performed a treadmill run (70% VO2 max) to exhaustion. Mean VO 2 was measured during each endurance exercise protocol. Subjects were required to complete visual analog scales for subjective measures of energy, focus and fatigue at the onset of exercise (PRE), 10-mins into their run (EX10) and immediately post-exercise (IP). Results: Time to exhaustion was significantly greater (p = 0.012) during SUP than P. Subjects consuming the supplement were able to run 12.5% longer than during the placebo treatment. Subjects consuming SUP reported significantly greater focus (p = 0.031), energy (p = 0.016), and less fatigue (p = 0.005) at PRE. Significant differences between groups were seen at EX10 for focus (p = 0.026) and energy (p = 0.004), but not fatigue (p = 0.123). No differences were seen at IP for either focus (p = 0.215), energy (p = 0.717) or fatigue (p = 0.430). Conclusions: Results of this study indicate that the supplement Amino Impact™ can significantly increase time to exhaustion during a moderate intensity endurance run and improve subjective feelings of focus, energy and fatigue.

Journal ArticleDOI
TL;DR: Findings indicate that an individual following a popular diet plan as suggested, with food alone, has a high likelihood of becoming micronutrient deficient; a state shown to be scientifically linked to an increased risk for many dangerous and debilitating health conditions and diseases.
Abstract: Research has shown micronutrient deficiency to be scientifically linked to a higher risk of overweight/obesity and other dangerous and debilitating diseases With more than two-thirds of the US population overweight or obese, and research showing that one-third are on a diet at any given time, a need existed to determine whether current popular diet plans could protect followers from micronutrient deficiency by providing the minimum levels of 27 micronutrients, as determined by the US Food and Drug Administrations (FDA) Reference Daily Intake (RDI) guidelines Suggested daily menus from four popular diet plans (Atkins for Life diet, The South Beach Diet, the DASH diet, the DASH diet) were evaluated Calorie and micronutrient content of each ingredient, in each meal, were determined by using food composition data from the US Department of Agriculture Nutrient Database for Standard Reference The results were evaluated for sufficiency and total calories and deficient micronutrients were identified The diet plans that did not meet 100% sufficiency by RDI guidelines for each of the 27 micronutrients were re-analyzed; (1) to identify a micronutrient sufficient calorie intake for all 27 micronutrients, and (2) to identify a second micronutrient sufficient calorie intake when consistently low or nonexistent micronutrients were removed from the sufficiency requirement Analysis determined that each of the four popular diet plans failed to provide minimum RDI sufficiency for all 27 micronutrients analyzed The four diet plans, on average, were found to be RDI sufficient in (1175 ± 202; mean ± SEM) of the analyzed 27 micronutrients and contain (174825 ± 20957) kcal Further analysis of the four diets found that an average calorie intake of (27,575 ± 466072) would be required to achieve sufficiency in all 27 micronutrients Six micronutrients (vitamin B7, vitamin D, vitamin E, chromium, iodine and molybdenum) were identified as consistently low or nonexistent in all four diet plans These six micronutrients were removed from the sufficiency requirement and additional analysis of the four diets was conducted It was determined that an average calorie content of (3,475 ± 54381) would be required to reach 100% sufficiency in the remaining 21 micronutrients These findings are significant and indicate that an individual following a popular diet plan as suggested, with food alone, has a high likelihood of becoming micronutrient deficient; a state shown to be scientifically linked to an increased risk for many dangerous and debilitating health conditions and diseases

Journal ArticleDOI
TL;DR: It is suggested that NaHCO3 supplementation could prevent the decline in skilled tennis performance after a simulated match.
Abstract: The supplementation of sodium bicarbonate (NaHCO3) could increase performance or delay fatigue in intermittent high-intensity exercise. Prolonged tennis matches result in fatigue, which impairs skilled performance. The aim of this study was to investigate the effect of NaHCO3 supplementation on skilled tennis performance after a simulated match. Nine male college tennis players were recruited for this randomized cross-over, placebo-controlled, double-blind study. The participants consumed NaHCO3 (0.3 g. kg-1) or NaCl (0.209 g. kg-1) before the trial. An additional supplementation of 0.1 g. kg-1 NaHCO3 or 0.07 g. kg-1 NaCl was ingested after the third game in the simulated match. The Loughborough Tennis Skill Test was performed before and after the simulated match. Post-match [HCO3-] and base excess were significantly higher in the bicarbonate trial than those in the placebo trial. Blood [lactate] was significantly increased in the placebo (pre: 1.22 ± 0.54; post: 2.17 ± 1.46 mM) and bicarbonate (pre: 1.23 ± 0.41; post: 3.21 ± 1.89 mM) trials. The match-induced change in blood [lactate] was significantly higher in the bicarbonate trial. Blood pH remained unchanged in the placebo trial (pre: 7.37 ± 0.32; post: 7.37 ± 0.14) but was significantly increased in the bicarbonate trial (pre: 7.37 ± 0.26; post: 7.45 ± 0.63), indicating a more alkaline environment. The service and forehand ground stroke consistency scores were declined significantly after the simulated match in the placebo trial, while they were maintained in the bicarbonate trial. The match-induced declines in the consistency scores were significantly larger in the placebo trial than those in the bicarbonate trial. This study suggested that NaHCO3 supplementation could prevent the decline in skilled tennis performance after a simulated match.

Journal ArticleDOI
TL;DR: B supplementation increased power, force and maintenance of these measures in selected performance measures, and these were more apparent in the smaller upper-body muscle groups.
Abstract: We investigated the ergogenic effects of betaine (B) supplementation on strength and power performance. Twelve men (mean ± SD age, 21 ± 3 yr; mass, 79.1 ± 10.7 kg) with a minimum of 3 months resistance training completed two 14-day experimental trials separated by a 14-day washout period, in a balanced, randomized, double-blind, repeated measures, crossover design. Prior to and following 14 days of twice daily B or placebo (P) supplementation, subjects completed two consecutive days (D1 and D2) of a standardized high intensity strength/power resistance exercise challenge (REC). Performance included bench, squat, and jump tests. Following 14-days of B supplementation, D1 and D2 bench throw power (1779 ± 90 and 1788 ± 34 W, respectively) and isometric bench press force (2922 ± 297 and 2503 ± 28 N, respectively) were increased (p < 0.05) during REC compared to pre-supplementation values (1534 ± 30 and 1498 ± 29 W, respectively; 2345 ± 64 and 2423 ± 84 N, respectively) and corresponding P values (1374 ± 128 and 1523 ± 39 W; 2175 ± 92 and 2128 ± 56 N, respectively). Compared to pre-supplementation, vertical jump power and isometric squat force increased (p < 0.05) on D1 and D2 following B supplementation. However, there were no differences in jump squat power or the number of bench press or squat repetitions. B supplementation increased power, force and maintenance of these measures in selected performance measures, and these were more apparent in the smaller upper-body muscle groups.

Journal ArticleDOI
TL;DR: The data indicate that a single ingredient (GlycoCarn®) can provide similar practical benefit than finished products containing multiple ingredients, and while the products do not have data in relation to post-exercise recovery parameters, the tested products are ineffective in terms of increasing blood flow and improving acute upper body exercise performance.
Abstract: We compared Glycine Propionyl-L-Carnitine (GlycoCarn®) and three different pre-workout nutritional supplements on measures of skeletal muscle oxygen saturation (StO2), blood nitrate/nitrite (NOx), lactate (HLa), malondialdehyde (MDA), and exercise performance in men. Using a randomized, double-blind, cross-over design, 19 resistance trained men performed tests of muscular power (bench press throws) and endurance (10 sets of bench press to muscular failure). A placebo, GlycoCarn®, or one of three dietary supplements (SUPP1, SUPP2, SUPP3) was consumed prior to exercise, with one week separating conditions. Blood was collected before receiving the condition and immediately after exercise. StO2 was measured during the endurance test using Near Infrared Spectroscopy. Heart rate (HR) and rating of perceived exertion (RPE) were determined at the end of each set. A condition effect was noted for StO2 at the start of exercise (p = 0.02), with GlycoCarn® higher than SUPP2. A condition effect was also noted for StO2 at the end of exercise (p = 0.003), with SUPP1 lower than all other conditions. No statistically significant interaction, condition, or time effects were noted for NOx or MDA (p > 0.05); however, MDA decreased 13.7% with GlycoCarn® and increased in all other conditions. Only a time effect was noted for HLa (p 0.05); however, GlycoCarn® resulted in a statistically insignificant greater total volume load compared to the placebo (3.3%), SUPP1 (4.2%), SUPP2 (2.5%), and SUPP3 (4.6%). None of the products tested resulted in favorable changes in our chosen outcome measures, with the exception of GlycoCarn® in terms of higher StO2 at the start of exercise. GlycoCarn® resulted in a 13.7% decrease in MDA from pre- to post-exercise and yielded a non-significant but greater total volume load compared to all other conditions. These data indicate that 1) a single ingredient (GlycoCarn®) can provide similar practical benefit than finished products containing multiple ingredients, and 2) while we do not have data in relation to post-exercise recovery parameters, the tested products are ineffective in terms of increasing blood flow and improving acute upper body exercise performance.

Journal ArticleDOI
TL;DR: The explorative approach of this study combined with the determination of a decreased intracellular DCFH2 oxidation revealed an additional stimulation of cellular antioxidative mechanisms when myotubes were exposed to CMH, which may contribute to an increased exercise performance mediated by increased ability to cope with training-induced increases in oxidative stress.
Abstract: Background: Creatine is a key intermediate in energy metabolism and supplementation of creatine has been used for increasing muscle mass, strength and endurance. Creatine supplementation has also been reported to trigger the skeletal muscle expression of insulin like growth factor I, to increase the fat-free mass and improve cognition in elderly, and more explorative approaches like transcriptomics has revealed additional information. The aim of the present study was to reveal additional insight into the biochemical effects of creatine supplementation at the protein and metabolite level by integrating the explorative techniques, proteomics and NMR metabonomics, in a systems biology approach. Methods: Differentiated mouse myotube cultures (C2C12) were exposed to 5 mM creatine monohydrate (CMH) for 24 hours. For proteomics studies, lysed myotubes were analyzed in single 2-DGE gels where the first dimension of protein separation was pI 5-8 and second dimension was a 12.5% Criterion gel. Differentially expressed protein spots of significance were excised from the gel, desalted and identified by peptide mass fingerprinting using MALDI-TOF MS. For NMR metabonomic studies, chloroform/methanol extractions of the myotubes were subjected to one-dimensional 1H NMR spectroscopy and the intracellular oxidative status of myotubes was assessed by intracellular DCFH 2 oxidation after 24 h pre-incubation with CMH. Results: The identified differentially expressed proteins included vimentin, malate dehydrogenase, peroxiredoxin, thioredoxin dependent peroxide reductase, and 75 kDa and 78 kDa glucose regulated protein precursors. After CMH exposure, up-regulated proteomic spots correlated positively with the NMR signals from creatine, while downregulated proteomic spots were negatively correlated with these NMR signals. The identified differentially regulated proteins were related to energy metabolism, glucose regulated stress, cellular structure and the antioxidative defence system. The suggested improvement of the antioxidative defence was confirmed by a reduced intracellular DCFH2 oxidation with increasing concentrations of CMH in the 24 h pre-incubation medium. Conclusions: The explorative approach of this study combined with the determination of a decreased intracellular DCFH 2 oxidation revealed an additional stimulation of cellular antioxidative mechanisms when myotubes were exposed to CMH. This may contribute to an increased exercise performance mediated by increased ability to cope with training-induced increases in oxidative stress.

Journal ArticleDOI
TL;DR: The data indicate that vitamin D status in female Soldiers may decline during military training in the late summer and early autumn months in the Southeastern US, as well as the functional impact of decliningitamin D status on bone health.
Abstract: Vitamin D is an essential nutrient for maintaining bone health. Recent data suggest that vitamin D and calcium supplementation might affect stress fracture incidence in military personnel. Although stress fracture is a health risk for military personnel during training, no study has investigated changes in vitamin D status in Soldiers during United States (US) Army basic combat training (BCT). This longitudinal study aimed to determine the effects of BCT on 25-hydroxyvitamin D (25(OH)D) and parathyroid hormone (PTH) levels in female Soldiers. Serum 25(OH)D and PTH were assessed in 74 fasted Soldier volunteers before and after an 8-week BCT course conducted between August and October in Columbia, South Carolina. In the total study population, 25(OH)D levels decreased (mean ± SD) from 72.9 ± 30.0 to 63.3 ± 19.8 nmol/L (P < 0.05) and PTH levels increased from 36.2 ± 15.8 to 47.5 ± 21.2 pg/mL (P < 0.05) during BCT. Ethnicity affected changes in vitamin D status (ethnicity-by-time interaction, P < 0.05); 25(OH)D decreased (P < 0.05) in both Hispanic and non-Hispanic whites, but did not change in non-Hispanic blacks. Ethnicity did not affect BCT-induced changes in PTH. These data indicate that vitamin D status in female Soldiers may decline during military training in the late summer and early autumn months in the Southeastern US. Future studies should strive to determine the impact of military clothing and seasonality on vitamin D status, as well as the functional impact of declining vitamin D status on bone health.

Journal ArticleDOI
TL;DR: It is demonstrated that AG supplementation provided a significant ergogenic benefit by increasing time to exhaustion during a mild hydration stress, likely mediated by an enhanced fluid and electrolyte uptake.
Abstract: The effect of acute L-alanyl-L-glutamine (AG; Sustamine™) ingestion on performance changes and markers of fluid regulation, immune, inflammatory, oxidative stress, and recovery was examined in response to exhaustive endurance exercise, during and in the absence of dehydration. Ten physically active males (20.8 ± 0.6 y; 176.8 ± 7.2 cm; 77.4 ± 10.5 kg; 12.3 ± 4.6% body fat) volunteered to participate in this study. During the first visit (T1) subjects reported to the laboratory in a euhydrated state to provide a baseline (BL) blood draw and perform a maximal exercise test. In the four subsequent randomly ordered trials, subjects dehydrated to -2.5% of their baseline body mass. For T2, subjects achieved their goal weight and were not rehydrated. During T3 - T5, subjects reached their goal weight and then rehydrated to 1.5% of their baseline body mass by drinking either water (T3) or two different doses (T4 and T5) of the AG supplement (0.05 g·kg-1 and 0.2 g·kg-1, respectively). Subjects then exercised at a workload that elicited 75% of their VO2 max on a cycle ergometer. During T2 - T5 blood draws occurred once goal body mass was achieved (DHY), immediately prior to the exercise stress (RHY), and immediately following the exercise protocol (IP). Resting 24 hour (24P) blood samples were also obtained. Blood samples were analyzed for glutamine, potassium, sodium, aldosterone, arginine vasopressin (AVP), C-reactive protein (CRP), interleukin-6 (IL-6), malondialdehyde (MDA), testosterone, cortisol, ACTH, growth hormone and creatine kinase. Statistical evaluation of performance, hormonal and biochemical changes was accomplished using a repeated measures analysis of variance. Glutamine concentrations for T5 were significantly higher at RHY and IP than T2 - T4. When examining performance changes (difference between T2 - T5 and T1), significantly greater times to exhaustion occurred during T4 (130.2 ± 340.2 sec) and T5 (157.4 ± 263.1 sec) compared to T2 (455.6 ± 245.0 sec). Plasma sodium concentrations were greater (p < 0.05) at RHY and IP for T2 than all other trials. Aldosterone concentrations at RHY and IP were significantly lower than that at BL and DHY. AVP was significantly elevated at DHY, RHY and IP compared to BL measures. No significant differences were observed between trials in CRP, IL-6, MDA, or in any of the other hormonal or biochemical measures. Results demonstrate that AG supplementation provided a significant ergogenic benefit by increasing time to exhaustion during a mild hydration stress. This ergogenic effect was likely mediated by an enhanced fluid and electrolyte uptake.

Journal ArticleDOI
TL;DR: Supplementation with Vernonia cinerea Less and exercise provided benefit related to reduced smoking rate, which may be related to oxidaive stress and beta-endorphine levels.
Abstract: Purpose The aim of this study was to evaluate the effects of Vernonia cinerea Less. (VC) supplementation and exercise on oxidative stress biomarkers, beta-endorphin release, and the rate of cigarette smoking.

Journal Article
TL;DR: In this paper, the authors evaluated the effects of Vernonia cinerea less (VC) supplementation and exercise on oxidative stress biomarkers, beta-endorphin release, and the rate of cigarette smoking.
Abstract: PurposeThe aim of this study was to evaluate the effects of Vernonia cinerea Less. (VC) supplementation and exercise on oxidative stress biomarkers, beta-endorphin release, and the rate of cigarette smoking.MethodsVolunteer smokers were randomly divided into four groups: group 1: VC supplement; group 2: exercise with VC supplement; group 3: exercise; and group 4: control. VC was prepared by wash and dry techniques and taken orally before smoking, matching the frequency of strenuous exercise (three times weekly). Before and after a two month period, exhaled carbon monoxide (CO), blood oxidative stress (malondialdehyde [MDA], nitric oxide [NOx], protein hydroperoxide [PrOOH] and total antioxidant capacity [TAC]), beta-endorphin and smoking rate were measured, and statistically analyzed.ResultsIn Group 1, MDA, PrOOH, and NOx significantly decreased, whereas TAC increased (p < 0.05). In Group 2, MDA and PrOOH decreased (p < 0.05), with no other changes noted (p > 0.05). In Group 3, MDA, PrOOH, NOx, TAC, and beta-endorphin levels increased significantly (p < 0.05). Group 4 showed no change in oxidative stress variables or beta-endorphine levels (p > 0.05). All groups had lower levels of CO after the intervention. The smoking rate for light cigarette decreased in group 2(62.7%), 1(59.52%), 3 (53.57%) and 4(14.04%), whereas in self-rolled cigarettes it decreased in group 1 (54.47%), 3 (42.30%), 2 (40%) and 4 (9.2%).ConclusionSupplementation with Vernonia cinerea Less and exercise provided benefit related to reduced smoking rate, which may be related to oxidaive stress and beta-endorphine levels.

Journal ArticleDOI
TL;DR: It can be concluded that although creatine supplementation may increase resting muscle total creatine, muscle creatine phosphate, and plasma volume, and may lead to a reduction in oxygen consumption during submaximal exercise, creatine supplementation does not improve sprint performance at the end of endurance cycling exercise.
Abstract: The effects of creatine supplementation on muscle metabolism and exercise performance during a simulated endurance road race was investigated. Twelve adult male (27.3 ± 1.0 yr, 178.6 ± 1.4 cm, 78.0 ± 2.5 kg, 8.9 ± 1.1 %fat) endurance-trained (53.3 ± 2.0 ml* kg-1* min-1, cycling ~160 km/wk) cyclists completed a simulated road race on a cycle ergometer (Lode), consisting of a two-hour cycling bout at 60% of peak aerobic capacity (VO2peak) with three 10-second sprints performed at 110% VO2 peak every 15 minutes. Cyclists completed the 2-hr cycling bout before and after dietary creatine monohydrate or placebo supplementation (3 g/day for 28 days). Muscle biopsies were taken at rest and five minutes before the end of the two-hour ride. There was a 24.5 ± 10.0% increase in resting muscle total creatine and 38.4 ± 23.9% increase in muscle creatine phosphate in the creatine group (P < 0.05). Plasma glucose, blood lactate, and respiratory exchange ratio during the 2-hour ride, as well as VO2 peak, were not affected by creatine supplementation. Submaximal oxygen consumption near the end of the two-hour ride was decreased by approximately 10% by creatine supplementation (P < 0.05). Changes in plasma volume from pre- to post-supplementation were significantly greater in the creatine group (+14.0 ± 6.3%) than the placebo group (-10.4 ± 4.4%; P < 0.05) at 90 minutes of exercise. The time of the final sprint to exhaustion at the end of the 2-hour cycling bout was not affected by creatine supplementation (creatine pre, 64.4 ± 13.5s; creatine post, 88.8 ± 24.6s; placebo pre, 69.0 ± 24.8s; placebo post 92.8 ± 31.2s: creatine vs. placebo not significant). Power output for the final sprint was increased by ~33% in both groups (creatine vs. placebo not significant). It can be concluded that although creatine supplementation may increase resting muscle total creatine, muscle creatine phosphate, and plasma volume, and may lead to a reduction in oxygen consumption during submaximal exercise, creatine supplementation does not improve sprint performance at the end of endurance cycling exercise.

Journal ArticleDOI
TL;DR: It is concluded that 500 mg of this proprietary Fenugreek extraction had a significant impact on both upper- and lower-body strength and body composition in comparison to placebo in a double blind controlled trial.
Abstract: Fenugreek (Trigonella foenum-graecum) is a leguminous, annual plant originating in India and North Africa. In recent years Fenugreek has been touted as an ergogenic aid. The purpose of this study was to evaluate the effects of Fenugreek supplementation on strength and body composition. 49 Resistance trained men were matched according to body weight and randomly assigned to ingest in a double blind manner capsules containing 500 mg of a placebo (N = 23, 20 ± 1.9 years, 178 ± 6.3 cm, 85 ± 12.7 kg, 17 ± 5.6 %BF) or Fenugreek (N = 26, 21 ± 2.8 years, 178 ± 6 cm, 90 ± 18.2 kg, 19.3 ± 8.4 %BF). Subjects participated in a supervised 4-day per week periodized resistance-training program split into two upper and two lower extremity workouts per week for a total of 8-weeks. At 0, 4, and 8-weeks, subjects underwent hydrodensiometery body composition, 1-RM strength, muscle endurance, and anaerobic capacity testing. Data were analyzed using repeated measures ANOVA and are presented as mean ± SD changes from baseline after 60-days. No significant differences (p > 0.05) between groups were noted for training volume. Significant group × time interaction effects were observed among groups in changes in body fat (FEN: -2.3 ± 1.4%BF; PL: -0.39 ± 1.6 %BF, p 0.05). It is concluded that 500 mg of this proprietary Fenugreek extraction had a significant impact on both upper- and lower-body strength and body composition in comparison to placebo in a double blind controlled trial. These changes were obtained with no clinical side effects.

Journal ArticleDOI
TL;DR: An arginine and antioxidant-containing supplement increased the anaerobic threshold at both week one and week three in elderly cyclists, indicating a potential role of L-arginine and antioxidants supplementation in improving exercise performance in elderly.
Abstract: Human exercise capacity declines with advancing age. These changes often result in loss of physical fitness and more rapid senescence. Nitric oxide (NO) has been implicated in improvement of exercise capacity through vascular smooth muscle relaxation in both coronary and skeletal muscle arteries, as well as via independent mechanisms. Antioxidants may prevent nitric oxide inactivation by oxygen free radicals. The purpose of this study was to investigate the effects of an L-arginine and antioxidant supplement on exercise performance in elderly male cyclists. This was a two-arm prospectively randomized double-blinded and placebo-controlled trial. Sixteen male cyclists were randomized to receive either a proprietary supplement (Niteworks®, Herbalife International Inc., Century City, CA) or a placebo powder. Exercise parameters were assessed by maximal incremental exercise testing performed on a stationary cycle ergometer using breath-by-breath analysis at baseline, week one and week three. There was no difference between baseline exercise parameters. In the supplemented group, anaerobic threshold increased by 16.7% (2.38 ± 0.18 L/min, p < 0.01) at week 1, and the effect was sustained by week 3 with a 14.2% (2.33 ± 0.44 L/min, p < 0.01). In the control group, there was no change in anaerobic threshold at weeks 1 and 3 compared to baseline (1.88 ± 0.20 L/min at week 1, and 1.86 ± 0.21 L/min at week 3). The anaerobic threshold for the supplement groups was significantly higher than that of placebo group at week 1 and week 3. There were no significant changes noted in VO2 max between control and intervention groups at either week 1 or week 3 by comparison to baseline. An arginine and antioxidant-containing supplement increased the anaerobic threshold at both week one and week three in elderly cyclists. No effect on VO2 max was observed. This study indicated a potential role of L-arginine and antioxidant supplementation in improving exercise performance in elderly.

Journal ArticleDOI
TL;DR: Results indicate that acute ingestion of CRAM can maintain reaction time, and subjective feelings of focus and alertness to both visual and auditory stimuli in healthy college students following exhaustive exercise.
Abstract: Background The purpose of this study was to examine the effect of acute and prolonged (4-weeks) ingestion of a supplement designed to improve reaction time and subjective measures of alertness, energy, fatigue, and focus compared to placebo.

Journal ArticleDOI
TL;DR: Compared to CP, SOmaxP administration augments and increases gains in lean mass, bench press strength, and muscular performance during nine weeks of intense resistance training, and clinical blood chemistries were measured at baseline and afterNine weeks of supplementation and training.
Abstract: The purpose of this study was to compare the effects of supplementation with Gaspari Nutrition's SOmaxP Maximum Performance™ (SOmaxP) versus a comparator product (CP) containing an equal amount of creatine (4 g), carbohydrate (39 g maltodextrin), and protein (7 g whey protein hydrolysate) on muscular strength, muscular endurance, and body composition during nine weeks of intense resistance training. Using a prospective, randomized, double-blind design, 20 healthy men (mean ± SD age, height, weight, % body fat: 22.9 ± 2.6 y, 178.4 ± 5.7 cm, 80.5 ± 6.6 kg, 16.6 ± 4.0%) were matched for age, body weight, resistance training history, bench press strength, bench press endurance, and percent body fat and then randomly assigned via the ABBA procedure to ingest 1/2 scoop (dissolved in 15 oz water) of SOmaxP or CP prior to, and another 1/2 scoop (dissolved in 15 oz water) during resistance exercise. Body composition (DEXA), muscular performance (1-RM bench press and repetitions to failure [RTF: 3 sets × baseline body weight, 60-sec rest between sets]), and clinical blood chemistries were measured at baseline and after nine weeks of supplementation and training. Subjects were required to maintain their normal dietary habits and follow a specific, progressive overload resistance training program (4-days/wk, upper body/lower body split) during the study. An intent-to-treat approach was used and data were analyzed via ANCOVA using baseline values as the covariate. Statistical significance was set a priori at p ≤ 0.05. When adjusted for initial differences, significant between group post-test means were noted in: 1-RM bench press (SOmaxP: 133.3 ± 1.3 kg [19.8% increase] vs. CP: 128.5 ± 1.3 kg [15.3% increase]; p < 0.019); lean mass (SOmaxP: 64.1 ± 0.4 kg [2.4% increase] vs. 62.8 ± 0.4 kg [0.27% increase], p < 0.049); RTF (SOmaxP: 33.3 ± 1.1 reps [44.8% increase] vs. 27.8 ± 1.1 reps [20.9% increase], p < 0.004); and fat mass (SOmaxP: 12.06 ± 0.53 kg [9.8% decrease] vs. 13.90 ± 0.53 kg [4.1% increase], p < 0.024). No statistically significant differences in vital signs (heart rate, systolic and diastolic blood pressures) or clinical blood chemistries were noted. These data indicate that compared to CP, SOmaxP administration augments and increases gains in lean mass, bench press strength, and muscular performance during nine weeks of intense resistance training. Studies designed to confirm these results and clarify the molecular mechanisms by which SOmaxP exerts the observed salutary effects have begun. Both SOmaxP and the CP were well-tolerated, and no supplement safety issues were identified.

Journal ArticleDOI
TL;DR: CT supplementation significantly attenuated the increase in neutrophil count and the reduction in lymphocyte count induced by intense endurance exercise and suggest that CT supplementation may suppress the exercise-induced fluctuations of the blood immunocompetent cells and may help to reduce the alteration of the immune state.
Abstract: Background Intense exercise induces increased blood neutrophil counts and decreased lymphocyte counts, and leads to inflammation and immunosuppression. It was previously reported that cystine and theanine (CT) supplementation by long-distance runners before a training camp suppressed the changes of these blood parameters observed in un-supplemented control subjects after the camp. The purpose of the present study was to determine the effects of CT supplementation on the inflammatory response and immune state before and after intense endurance exercise in long-distance runners at a training camp.

Journal ArticleDOI
TL;DR: There is a concern that athletes may endanger their health by using vasodilators to enhance athletic performance and PDE-5 inhibitors or chemicals in the nitrate/nitrate group are currently not prohibited or tested for by the doping control agencies.
Abstract: Background Considerable interest has been shown by athletes and scientists in the potential for nitric oxide and associated vasodilators to enhance performance. This study aims to explore potential misuse of vasodilators by the athletes, and to highlight the growing concern over these agents.

Journal ArticleDOI
TL;DR: The major finding of this study is that CR supplementation was able to spare muscle glycogen during a high intensity intermittent exercise in rats.
Abstract: Background: The effects of creatine (CR) supplementation on glycogen content are still debatable. Thus, due to the current lack of clarity, we investigated the effects of CR supplementation on muscle glycogen content after high intensity intermittent exercise in rats. Methods: First, the animals were submitted to a high intensity intermittent maximal swimming exercise protocol to ensure that CR-supplementation was able to delay fatigue (experiment 1). Then, the CR-mediated glycogen sparing effect was examined using a high intensity intermittent sub-maximal exercise test (fixed number of bouts; six bouts of 30-second duration interspersed by two-minute rest interval) (experiment 2). For both experiments, male Wistar rats were given either CR supplementation or placebo (Pl) for 5 days. Results: As expected, CR-supplemented animals were able to exercise for a significant higher number of bouts than Pl. Experiment 2 revealed a higher gastrocnemius glycogen content for the CR vs. the Pl group (33.59%). Additionally, CR animals presented lower blood lactate concentrations throughout the intermittent exercise bouts compared to Pl. No difference was found between groups in soleus glycogen content. Conclusion: The major finding of this study is that CR supplementation was able to spare muscle glycogen during a high intensity intermittent exercise in rats.