scispace - formally typeset
Search or ask a question

Showing papers in "Molecular BioSystems in 2006"


Journal ArticleDOI
TL;DR: The structure, function, and regulation of both unphosphorylated and phosphorylated STATs are described, and the function of cytoplasmic STATs is beginning to emerge.
Abstract: The Signal Transducer and Activator of Transcription (STAT) family of proteins was first discovered in the 1990's as key proteins in cytokine signaling. Since then, the field has greatly advanced in the past 15 years, providing significant insight into the structure, function, and regulation of STATs. STATs are latent cytoplasmic transcription factors consisting of seven mammalian members. They are Tyr phosphorylated upon activation, a post-translational modification critical for dimerization, nuclear import, DNA binding, and transcriptional activation. In recent years, unphosphorylated STATs have also been observed to dimerize and drive transcription, albeit by yet an obscure mechanism. In addition, the function of cytoplasmic STATs is beginning to emerge. Here, we describe the structure, function, and regulation of both unphosphorylated and phosphorylated STATs. STAT isoforms from alternative splicing or proteolytic processing, and post-translational modifications affecting STAT activities are also discussed.

308 citations


Journal ArticleDOI
TL;DR: Systems biology experimentation can benefit greatly from the progress in the development of microfluidic devices, and the ability to massively array devices on a chip opens the door for high-throughput, high fidelity experimentation to aid in accurate and precise unraveling of the intertwined signaling systems that compose the inner workings of the cell.
Abstract: Systems biology seeks to develop a complete understanding of cellular mechanisms by studying the functions of intra- and inter-cellular molecular interactions that trigger and coordinate cellular events. However, the complexity of biological systems causes accurate and precise systems biology experimentation to be a difficult task. Most biological experimentation focuses on highly detailed investigation of a single signaling mechanism, which lacks the throughput necessary to reconstruct the entirety of the biological system, while high-throughput testing often lacks the fidelity and detail necessary to fully comprehend the mechanisms of signal propagation. Systems biology experimentation, however, can benefit greatly from the progress in the development of microfluidic devices. Microfluidics provides the opportunity to study cells effectively on both a single- and multi-cellular level with high-resolution and localized application of experimental conditions with biomimetic physiological conditions. Additionally, the ability to massively array devices on a chip opens the door for high-throughput, high fidelity experimentation to aid in accurate and precise unraveling of the intertwined signaling systems that compose the inner workings of the cell.

305 citations


Journal ArticleDOI
TL;DR: This chapter has provided an introduction to the theoretical and practical issues associated with the use of fragment methods and lead-likeness, which offers some significant advantages by providing less complex molecules, which may have better potential for novel drug optimisation and by enabling new chemical space to be more effectively explored.
Abstract: There are clearly many different philosophies associated with adapting fragment screening into mainstream Drug Discovery Lead Generation strategies. Scientists at Astex, for instance, focus entirely on strategies involving use of X-ray crystallography and NMR. However, AstraZeneca uses a number of different fragment screening strategies. One approach is to screen a 2000 compound fragment set (with close to "lead-like" complexity) at 100 microM in parallel with every HTS such that the data are obtained on the entire screening collection at 10 microM plus the extra samples at 100 microM; this provides valuable compound potency data in a concentration range that is usually unexplored. The fragments are then screen-specific "privileged structures" that can be searched for in the rest of the HTS output and other databases as well as having synthesis follow-up. A typical workflow for a fragment screen within AstraZeneca is shown below (Figure 24) and highlights the desirability (particularly when screening >100 microM) for NMR and X-ray information to validate weak hits and give information on how to optimise them. In this chapter, we have provided an introduction to the theoretical and practical issues associated with the use of fragment methods and lead-likeness. Fragment-based approaches are still in an early stage of development and are just one of many interrelated techniques that are now used to identify novel lead compounds for drug development. Fragment based screening has some advantages, but like every other drug hunting strategy will not be universally applicable. There are in particular some practical challenges associated with fragment screening that relate to the generally lower level of potency that such compounds initially possess. Considerable synthetic effort has to be applied for post-fragment screening to build the sort of potency that would be expected to be found from a traditional HTS. However, if there are no low-hanging fruit in a screening collection to be found by HTS then the use of fragment screening can help find novelty that may lead to a target not being discarded as intractable. As such, the approach offers some significant advantages by providing less complex molecules, which may have better potential for novel drug optimisation and by enabling new chemical space to be more effectively explored. Many literature examples that cover examples of fragment screening approaches are still at the "proof of concept" stage and although delivering inhibitors or ligands, may still prove to be unsuitable when further ADMET and toxicity profiling is done. The next few years should see a maturing of the area, and as our understanding of how the concepts can be best applied, there are likely to be many more examples of attractive, small molecule hits, leads and candidate drugs derived from the approaches described.

163 citations


Journal ArticleDOI
TL;DR: These molecular display methods are reviewed with a focus on their suitability for protein affinity maturation, including phage display, bacterial and yeast display, ribosome display, and mRNA display.
Abstract: Affinity maturation of receptor-ligand interactions represents an important area of academic and pharmaceutical research. Improving affinity and specificity of proteins can tailor potency for both in vivo and in vitro applications. A number of different display platforms including phage display, bacterial and yeast display, ribosome display, and mRNA display can optimize protein affinity and specificity. Here, we will review the advantages and disadvantages of these molecular display methods with a focus on their suitability for protein affinity maturation.

154 citations


Journal ArticleDOI
TL;DR: In this article, a model of the IκB-NF-κB signal pathway system was used for parameter estimation and the sensitivity matrix was used to address correlation analysis, identifiability assessment and measurement set selection within the framework of least squares estimation and multivariate analysis.
Abstract: Mathematical modelling offers a variety of useful techniques to help in understanding the intrinsic behaviour of complex signal transduction networks. From the system engineering point of view, the dynamics of metabolic and signal transduction models can always be described by nonlinear ordinary differential equations (ODEs) following mass balance principles. Based on the state-space formulation, many methods from the area of automatic control can conveniently be applied to the modelling, analysis and design of cell networks. In the present study, dynamic sensitivity analysis is performed on a model of the IκB–NF-κB signal pathway system. Univariate analysis of the Euclidean-form overall sensitivities shows that only 8 out of the 64 parameters in the model have major influence on the nuclear NF-κB oscillations. The sensitivity matrix is then used to address correlation analysis, identifiability assessment and measurement set selection within the framework of least squares estimation and multivariate analysis. It is shown that certain pairs of parameters are exactly or highly correlated to each other in terms of their effects on the measured variables. The experimental design strategy provides guidance on which proteins should best be considered for measurement such that the unknown parameters can be estimated with the best statistical precision. The whole analysis scheme we describe provides efficient parameter estimation techniques for complex cell networks.

137 citations


Journal ArticleDOI
TL;DR: There was only limited overlap between the metabolites detected by the different methodologies and the combination of all three methods of metabolite profiling provided a much more comprehensive profile than would have been provided by their use individually.
Abstract: Plasma obtained from 20 week old normal Wistar-derived and Zucker (fa/fa) rats was analysed using a number of different analytical methodologies to obtain global metabolite profiles as part of metabonomic investigations of animal models of diabetes. Samples were analysed without sample pre-treatment using 1H NMR spectroscopy, after acetonitrile solvent protein precipitation by ultra-performance liquid chromatography-MS (UPLC-MS) and after acetonitrile protein precipitation and derivatisation for capillary gas chromatography-MS (GC-MS). Subsequent data analysis using principal components analysis revealed that all three analytical platforms readily detected differences between the plasma metabolite profiles of the two strains of rat. There was only limited overlap between the metabolites detected by the different methodologies and the combination of all three methods of metabolite profiling therefore provided a much more comprehensive profile than would have been provided by their use individually.

128 citations


Journal ArticleDOI
TL;DR: Analysis of the extended HSF1 signaling network following siRNA knockdown showed enrichment in a variety of categories related to protein folding, anti-apoptosis, RNA splicing, ubiquitinylation and others, highlighting a complex transcriptional program regulated directly and indirectly by HSF 1.
Abstract: Although HSF1 plays an important role in the cellular response to proteotoxic stressors, little is known about the structure and function of the human HSF1 signaling network under both stressed and unstressed conditions. In this study, we used a combination of chromatin immunoprecipitation microarray analysis and time course gene expression microarray analysis with and without siRNA-mediated inhibition of HSF1 to comprehensively identify genes regulated directly and indirectly by HSF1. The correlation between promoter binding and gene expression was not significant for all genes bound by HSF1, suggesting that HSF1 binding per se is not sufficient for expression. However, the correlation with promoter binding was significant for genes identified as HSF1-regulated following siRNA knockdown. Among promoters bound by HSF1 following heat shock, a gene ontology analysis showed significant enrichment only in categories related to protein folding. In contrast, analysis of the extended HSF1 signaling network following siRNA knockdown showed enrichment in a variety of categories related to protein folding, anti-apoptosis, RNA splicing, ubiquitinylation and others, highlighting a complex transcriptional program regulated directly and indirectly by HSF1.

128 citations


Journal ArticleDOI
TL;DR: Inhibition kinetics and binding assays provide compelling evidence that ramoplanin's and enduracidin's primary cellular target is the transglycosylation step of peptidoglycan biosynthesis.
Abstract: The lipoglycodepsipeptide antibiotic ramoplanin is proposed to inhibit bacterial cell wall biosynthesis by binding to intermediates along the pathway to mature peptidoglycan, which interferes with further enzymatic processing. Two sequential enzymatic steps can be blocked by ramoplanin, but there is no definitive information about whether one step is inhibited preferentially. Here we use inhibition kinetics and binding assays to assess whether ramoplanin and the related compound enduracidin have an intrinsic preference for one step over the other. Both ramoplanin and enduracidin preferentially inhibit the transglycosylation step of peptidoglycan biosynthesis compared with the MurG step. The basis for stronger inhibition is a greater affinity for the transglycosylase substrate Lipid II over the MurG substrate Lipid I. These results provide compelling evidence that ramoplanin's and enduracidin's primary cellular target is the transglycosylation step of peptidoglycan biosynthesis.

123 citations


Journal ArticleDOI
TL;DR: A real-time micro polymerase chain reaction (microPCR) system consisting of a microscope glass cover slip placed on top of a micromachined silicon chip integrated with a heater and a temperature sensor, designed, fabricated and tested.
Abstract: We have designed, fabricated and tested a real-time micro polymerase chain reaction (microPCR) system. It consists of a microscope glass cover slip placed on top of a micromachined silicon chip integrated with a heater and a temperature sensor. A single μL of a sample containing DNA was placed on the glass and encapsulated with mineral oil to prevent the evaporation of water, thus forming a virtual reaction chamber (VRC). The PCR chip required half a second to heat up from 72 to 94 °C and two seconds to cool from 94 to 55 °C, corresponding to a cooling rate of −20 K s−1. The real-time PCR yield was determined by a fluorescence method. The melting curve analysis method as well as capillary electrophoresis was performed to determine the purity of the PCR product. As the glass slip is disposable, cross-contamination from sample to sample is eliminated. The total cost of running the PCR is given by the value of the cover slip and its treatment.

119 citations


Journal ArticleDOI
TL;DR: Progress is described in adapting polyamides, triplex DNA, and engineered zinc finger DNA-binding proteins as dsDNA diagnostic systems and the sequence-enabled reassembly (SEER) method, involving the use of custom zinc finger proteins, offers the potential for direct detection of double-stranded DNA in cells.
Abstract: Methodologies to detect DNA sequences with high sensitivity and specificity have tremendous potential as molecular diagnostic agents. Most current methods exploit the ability of single-stranded DNA (ssDNA) to base pair with high specificity to a complementary molecule. However, recent advances in robust techniques for recognition of DNA in the major and minor groove have made possible the direct detection of double-stranded DNA (dsDNA), without the need for denaturation, renaturation, or hybridization. This review will describe the progress in adapting polyamides, triplex DNA, and engineered zinc finger DNA-binding proteins as dsDNA diagnostic systems. In particular, the sequence-enabled reassembly (SEER) method, involving the use of custom zinc finger proteins, offers the potential for direct detection of dsDNA in cells, with implications for cell-based diagnostics and therapeutics.

114 citations


Journal ArticleDOI
TL;DR: Techniques involved in stably immobilizing proteins and chemical libraries on slide surfaces as well as novel strategies developed to profile activities of proteins on arrays pave the way forward in high-throughput proteomic exploration.
Abstract: Advances in genomics and proteomics have opened up new possibilities for the rapid functional assignment and global characterization of proteins. Large-scale studies have accelerated this effort by using tools and strategies that enable highly parallel analysis of huge repertoires of biomolecules. Organized assortments of molecules on arrays have furnished a robust platform for rapid screening, lead discovery and molecular characterization. The essential advantage of microarray technology is attributed to the massive throughput attainable, coupled with a highly miniaturized platform—potentially driving discovery both as an analytical and diagnostic tool. The scope of microarrays has in recent years expanded impressively. Virtually every biological component—from diverse small molecules and macromolecules (such as DNA and proteins) to entire living cells—has been harnessed on microarrays in attempts to dissect the bewildering complexity of life. Herein we highlight strategies that address challenges in proteomics using microarrays of immobilized proteins and small molecules. Of specific interest are the techniques involved in stably immobilizing proteins and chemical libraries on slide surfaces as well as novel strategies developed to profile activities of proteins on arrays. As a rapidly maturing technology, microarrays pave the way forward in high-throughput proteomic exploration.

Journal ArticleDOI
TL;DR: The attempts to overcome limitations of biocatalysts using approaches such as mutagenesis, chemical modifications, conditions engineering and immobilization are covered.
Abstract: The cytochrome P450 enzymes (P450s or CYPs) form a large family of heme proteins involved in drug metabolism and in the biosynthesis of steroids, lipids, vitamins and natural products. Their remarkable ability to catalyze the insertion of oxygen into non-activated C–H bonds has attracted the interest of chemists for several decades. Very few chemical methods exist that directly hydroxylate aliphatic or aromatic C–H bonds, and most of them are not selective or of limited scope. Biocatalysts such as P450s represent a promising alternative: however, their applications have been limited by substrate specificity, low activity, poor stability and the need for cofactors. This review covers the attempts to overcome these limitations using approaches such as mutagenesis, chemical modifications, conditions engineering and immobilization.

Journal ArticleDOI
TL;DR: This review summarizes the use of scaffolds in the dual role of structural support for cell growth and vehicle for controlled release of tissue inductive factors, or DNA encoding for these factors.
Abstract: Cellular differentiation, organization, proliferation and apoptosis are determined by a combination of an intrinsic genetic program, matrix/substrate interactions, and extracellular cues received from the local microenvironment. These molecular cues come in the form of soluble (e.g. cytokines) and insoluble (e.g. ECM proteins) factors, as well as signals from surrounding cells that can promote specific cellular processes leading to tissue formation or regeneration. Recent developments in the field of tissue engineering have employed biomaterials to present these cues, providing powerful tools to investigate the cellular processes involved in tissue development, or to devise therapeutic strategies based on cell replacement or tissue regeneration. These inductive scaffolds utilize natural and/or synthetic biomaterials fabricated into three-dimensional structures. This review summarizes the use of scaffolds in the dual role of structural support for cell growth and vehicle for controlled release of tissue inductive factors, or DNA encoding for these factors. The confluence of molecular and cell biology, materials science and engineering provides the tools to create controllable microenvironments that mimic natural developmental processes and direct tissue formation for experimental and therapeutic applications.

Journal ArticleDOI
TL;DR: The ethylene signaling pathway starts with the perception of this gaseous hormone by a family of membrane-anchored receptors followed by a Raf-like kinase CTR1 that is physically associated with the receptors and actively inhibits downstream components of the pathway.
Abstract: Ethylene is a gaseous plant hormone involved in several important physiological processes throughout a plant's life cycle. Decades of scientific research devoted to deciphering how plants are able to sense and respond to this key molecule have culminated in the establishment of one of the best characterized signal transduction pathways in plants. The ethylene signaling pathway starts with the perception of this gaseous hormone by a family of membrane-anchored receptors followed by a Raf-like kinase CTR1 that is physically associated with the receptors and actively inhibits downstream components of the pathway. A major gap is represented by the mysterious plant protein EIN2 that genetically works downstream of CTR1 and upstream of the key transcription factor EIN3. Transcriptional regulation by EIN3 and EIN3-family members has emerged as a key aspect of ethylene responses. The major components of this transcriptional cascade have been characterized and the involvement of post-transcriptional control by ubiquitination has been determined. Nevertheless, many aspects of this pathway still remain unknown. Recent genomic studies aiming to provide a more comprehensive view of modulation of gene expression have further emphasized the ample role of ethylene in a myriad of cellular processes and particularly in its crosstalk with other important plant hormones. This review aims to serve as a guide to the main scientific discoveries that have shaped the field of ethylene biology in the recent years.

Journal ArticleDOI
TL;DR: The use of a lipitoid, a cationic oligopeptoid-phospholipid conjugate, for non-viral transfection of synthetic siRNA oligos in cell culture and promotes extensive downregulation of the targeted genes at both the protein and the mRNA level is described.
Abstract: RNA interference (RNAi) techniques hold forth great promise for therapeutic silencing of deleterious genes. However, clinical applications of RNAi require the development of safe and efficient methods for intracellular delivery of small interfering RNA (siRNA) oligonucleotides specific to targeted genes. We describe the use of a lipitoid, a cationic oligopeptoid-phospholipid conjugate, for non-viral transfection of synthetic siRNA oligos in cell culture. This peptidomimetic delivery vehicle allows for efficient siRNA transfection in a variety of human cell lines with negligible toxicity and promotes extensive downregulation of the targeted genes at both the protein and the mRNA level. We compare the lipitoid reagent to a standard commercial transfection reagent. The lipitoid is highly efficient even in primary IMR-90 human lung fibroblasts in which other commercial reagents are typically ineffective.


Journal ArticleDOI
TL;DR: This article provides optimized methods for screening libraries of molecules displayed on the beads on which they were synthesized, a particularly convenient format for library screening for laboratories with limited budgets and modest robotics capabilities.
Abstract: Many methods have been published by which combinatorial libraries may be screened for compounds capable of manipulating the function(s) of a target protein. One of the simplest approaches is to identify compounds in a library that bind the protein of interest, since these binding events usually occur on functionally important surfaces of the protein. These protein-binding compounds could also be of utility as protein capture agents in the construction of protein-detecting microarrays or related analytical devices and as reagents for the affinity purification of proteins from complex mixtures. In this article, we provide optimized methods for screening libraries of molecules displayed on the beads on which they were synthesized. This is a particularly convenient format for library screening for laboratories with limited budgets and modest robotics capabilities.

Journal ArticleDOI
TL;DR: Investigation of the global metabolite profiles of endogenous compounds excreted in urine by male Wistar-derived and Zucker (fa/fa) obese rats showed that the composition of the samples changed with age, enabling age-related metabolic trajectories to be constructed.
Abstract: The global metabolite profiles of endogenous compounds excreted in urine by male Wistar-derived and Zucker (fa/fa) obese rats were investigated from 4 to 20 weeks of age using both 1H NMR spectroscopy and HPLC-TOF/MS with electrospray ionisation (ESI). Multivariate data analysis was then performed on the resulting data which showed that the composition of the samples changed with age, enabling age-related metabolic trajectories to be constructed. At 4 weeks it was possible to observe differences between the urinary metabolite profiles from the two strains, with the difference becoming more pronounced over time resulting in a marked divergence in their metabolic trajectories at 8–10 weeks. The changes in metabolite profiles detected using 1H NMR spectroscopy included increased protein and glucose combined with reduced taurine concentrations in the urine of the Zucker animals compared to the Wistar-derived strain. In the case of HPLC-MS a number of ions were found to be present at increased levels in the urine of 20 week old Zucker rats compared to Wistar-derived rats including m/z 71.0204, 111.0054, 115.0019, 133.0167 and 149.0454 (negative ion ESI) and m/z 97.0764 and 162.1147 (positive ion ESI). Conversely, ions m/z 101.026 and 173.085 (negative ion ESI) and m/z 187.144 and 215.103 (positive ion ESI) were present in decreased amounts in urine from Zucker compared to Wistar-derived rats. Metabolite identities proposed for these ions include fumarate, maleate, furoic acid, ribose, suberic acid, carnitine and pyrimidine nucleoside. The utility of applying metabonomics to understanding disease processes and the biological relevance of some of the findings are discussed.

Journal ArticleDOI
TL;DR: The data suggest that the antioxidant status of erythrocytes is a critical determinant in the ability of these cells to release ATP, a known nitric oxide stimulus.
Abstract: A novel microflow technique is used to demonstrate that a weakened oxidant defense system found in diabetic erythrocytes leads to decreased levels of deformation-induced release of adenosine triphosphate (ATP) from erythrocytes. Addition of an oxidant to rabbit erythrocytes resulted in a 63% decrease in deformation-induced ATP release before eventually recovering to a value that was statistically equivalent to the initial value. Inhibition of glucose-6-phosphate dehydrogenase prevents recovery from the oxidant attack. Finally, results indicated that the ATP release from the erythrocytes of type II diabetics (91 nM ± 10 nM) was less than half of that measured from the erythrocytes of healthy controls (190 ± 10 nM). These data suggest that the antioxidant status of erythrocytes is a critical determinant in the ability of these cells to release ATP, a known nitric oxide stimulus.

Journal ArticleDOI
TL;DR: Gene expression profiling is a simple and precise method for determining differences in cells grown on different surfaces that are otherwise difficult to find using conventional methods and it is particularly noteworthy that no correlation was found between surface hydrophobicity and biocompatibility.
Abstract: There is an ever increasing need to find surfaces that are biocompatible for applications like medical implants and microfluidics-based cell culture systems. The biocompatibility of five different surfaces with different hydrophobicity was determined using gene expression profiling as well as more conventional methods to determine biocompatibility such as cellular growth rate, morphology and the hydrophobicity of the surfaces. HeLa cells grown on polymethylmethacrylate (PMMA) or a SU-8 surface treated with HNO3-ceric ammonium nitrate (HNO3-CAN) and ethanolamine showed no differences in growth rate, morphology or gene expression profiles as compared to HeLa cells grown in cell culture flasks. Cells grown on SU-8 treated with only HNO3-CAN showed almost the same growth rate (36 ± 1 h) and similar morphology as cells grown in cell culture flasks (32 ± 1 h), indicating good biocompatibility. However, more than 200 genes showed different expression levels in cells grown on SU-8 treated with HNO3-CAN compared to cells grown in cell culture flasks. This shows that gene expression profiling is a simple and precise method for determining differences in cells grown on different surfaces that are otherwise difficult to find using conventional methods. It is particularly noteworthy that no correlation was found between surface hydrophobicity and biocompatibility.

Journal ArticleDOI
TL;DR: Of the three peptoids identified as putative CBP ligands, only KBPo2 demonstrated the necessary combination of binding affinity, specificity and cell permeability necessary to function as a potent activation domain mimic in cells.
Abstract: Pharmacologic agents capable of activating the expression of specific genes would be valuable tools in biological research and could potentially be useful therapeutically. Efforts to develop a general solution to this problem have focused on the discovery of cell permeable mimics of native transcription factors comprised of linked DNA-binding and activation domain surrogates. Recently, we reported the isolation of a peptoid, called KBPo2, that binds a fragment of the mammalian coactivator CREB-binding protein (CBP). When delivered to a promoter-bound DNA-binding domain, this peptoid acted as a potent activation domain mimic in human cells. In this paper, we provide full details of the screening experiments and also report further characterization of this molecule as well as the other peptoids that came out of the screen. Of the three peptoids identified as putative CBP ligands, only KBPo2 demonstrated the necessary combination of binding affinity, specificity and cell permeability necessary to function as a potent activation domain mimic in cells. KBPo2 binds to CBP in a region different than that recognized by the native activation peptide from the transcription factor CREB.

Journal ArticleDOI
TL;DR: A new concept involving a single-step homogeneous method for single-nucleotide polymorphism (SNP) typing, in this method, a probe containing base-discriminating fluorescent (BDF) bases is added to a sample solution.
Abstract: We have developed a new concept involving a single-step homogeneous method for single-nucleotide polymorphism (SNP) typing. In this method, a probe containing base-discriminating fluorescent (BDF) bases is added to a sample solution. BDF base-containing DNA usually shows only a weak fluorescence, but emits a strong blue fluorescence when it recognizes a target base at a specific site in a hybridized strand. By utilizing this feature, a simple mix-and-read SNP typing assay was achieved without any tedious probe-designing or washing processes for exclusion of hybridization error or any addition of DNA-modifying enzymes. This is very different from conventional methods. We simultaneously analyzed a number of samples with ease, with a high accuracy, using our BDF assay.


Journal ArticleDOI
TL;DR: The crystal structures of two functionally diverse halogenases have been recently solved, providing new and exciting mechanistic detail that has the potential to be used both in the development of biomimetic halogenation catalysts and in engineering halogenase, and related enzymes, to halogenate new substrates.
Abstract: Since their discovery, halogenated metabolites have been somewhat of a biological peculiarity and it is only now that we are beginning to realize the full extent of their medicinal value. With the exception of the well characterized haloperoxidases, most of the biosynthetic enzymes and mechanisms responsible for the halogenations have remained elusive. The crystal structures of two functionally diverse halogenases have been recently solved, providing us with new and exciting mechanistic detail. This new insight has the potential to be used both in the development of biomimetic halogenation catalysts and in engineering halogenases, and related enzymes, to halogenate new substrates. Interestingly, these new structures also illustrate how the evolution of these enzymes mirrors that of the monooxygenases, where the cofactor is selected for its ability to generate a powerful oxygenating species. In this highlight article we will examine the proposed catalytic mechanisms of the halogenases and how these relate to their structures. In addition, we will consider how this chemistry might be harnessed and developed to produce novel enzymatic activity.

Journal ArticleDOI
TL;DR: This research presents a novel mesoporous substance that has shown promise in the treatment of a number of diseases and may ultimately contribute to development of effective medicines for tissue repair and regeneration.
Abstract: Stem cells hold promise for the treatment of a number of diseases. Small molecules serve as useful chemical tools to control stem cell fate and may ultimately contribute to development of effective medicines for tissue repair and regeneration.

Journal ArticleDOI
TL;DR: The results confirm the potential of acoustic wave physics for the detection of changes in the conformational chemistry of monolayer of biochemical macromolecules at the solid/liquid interface.
Abstract: A thickness shear-mode acoustic wave device, operated in a flow-through format, was used to detect the binding of ions or peptides to surface-attached calmodulin. On-line surface attachment of the protein was achieved by immobilisation of the biotinylated molecule via a neutravidin–biotin linkage onto the surface of the gold electrode of the detector. The interaction between calmodulin, and calcium and magnesium ions induced an increase in resonant frequency and a decrease in motional resistance, which were reversible on washing with buffer. Interestingly, the changes in resonant frequency and motional resistance induced by the binding were opposite to the normal operation of the detector. The response was interpreted as a decrease in surface coupling (partial slip at the liquid/solid interface) instigated by exposure of hydrophobic domains on the protein, and an increase in the thickness, and hence effective wavelength, of the acoustic device, corresponding to an increase in the length of calmodulin by 1.5 A. This result is consistent with the literature value of 4 A. In addition, the interaction of the protein with peptide together with calcium ions was detected successfully, despite the relatively low molecular mass of the 2-kDa peptide. These results confirm the potential of acoustic wave physics for the detection of changes in the conformational chemistry of monolayer of biochemical macromolecules at the solid/liquid interface.

Journal ArticleDOI
TL;DR: The total synthesis of OdDHL is described using solid-supported reagents and scavengers, which has the potential to be used for automated analogue synthesis and has the therapeutic potential for protecting animals from bacterial septic shock.
Abstract: Pseudomonas aeruginosa produces the quorum sensing signalling molecule N-(3-oxododecanoyl)-L-homoserine lactone (OdDHL). This natural product not only coordinates production of virulence factors by the bacterium, but also has immunomodulatory effects on the host organism. Immunomodulatory small molecules are valuable for immunology research and are potential therapeutics for autoimmune diseases such as rheumatoid arthritis, and immunosuppressive drugs following organ transplants. We describe the total synthesis of OdDHL using solid-supported reagents and scavengers, which has the potential to be used for automated analogue synthesis. OdDHL and four analogues were tested for their ability to activate or inhibit release of the pro-inflammatory mediators tumour necrosis factor alpha (TNFα) and nitric oxide (NO) from equine or murine macrophages (immune cells). Two of the analogues showed substantial immunomodulatory activity with these macrophages. One analogue showed differing species selectivity, being a potent antagonist in mouse cells, but a partial agonist in horse-derived macrophages. These compounds have the therapeutic potential to be used for protecting animals from bacterial septic shock.

Journal ArticleDOI
TL;DR: A short review summarizes a selection of technological innovations in proteomics that contribute to systems biology studies.
Abstract: It has now become apparent that a full understanding of a biological process (e.g. a disease state) is only possible if all biomolecular interactions are taken into account. Systems biology works towards understanding the intricacies of cellular life through the collaborative efforts of biologists, chemists, mathematicians and computer scientists and recently, a number of laboratories around the world have embarked upon such research agendas. The fields of genomics and proteomics are foundational in systems biology studies and a great deal of research is currently being conducted in each worldwide. Moreover, many technological advances (particularly in mass spectrometry) have led to a dramatic rise in the number of proteomic studies over the past two decades. This short review summarizes a selection of technological innovations in proteomics that contribute to systems biology studies.

Journal ArticleDOI
TL;DR: The dry peptide array system is a promising tool for detecting and analyzing target proteins and will play a role in development of high-throughput protein-detecting nano/micro arrays for proteomics and ligand screening studies.
Abstract: A novel dry peptide microarray system has been constructed that affords a practical solution for protein detection and analysis. This system is an array preparation and assay procedure under dry conditions that uses designed peptides as non-immobilized capture agents for the detection of proteins. The system has several advantages that include its portability and ease-of-use, as well as the fact that vaporization of sample solutions need not be considered. In this study, various proteins have been characterized with an α-helical peptide mini-library. When proteins were added to the peptide library array, the fluorescent peptides showed different fluorescent intensities depending on their sequences. The patterns of these responses could be regarded as ‘protein fingerprints’ (PFPs), which are sufficient to establish the identities of the target proteins. Furthermore, statistical analysis of the resulting PFPs was performed using cluster analysis. The PFPs of the proteins were clustered successfully depending on their families and binding properties. Additionally, the target protein was characterized using a nanolitre system and could be detected down to 1.2 fmol. These studies imply that the dry peptide array system is a promising tool for detecting and analyzing target proteins. The dry peptide array will play a role in development of high-throughput protein-detecting nano/micro arrays for proteomics and ligand screening studies.

Journal ArticleDOI
TL;DR: Pyrene-labelled lipid intermediates I and II can be generated using Micrococcus flavus membranes, enabling the study of the later lipid-linked steps of bacterial peptidoglycan biosynthesis, consisting of at least four enzymatic reactions, which are targets for antibacterial agents.
Abstract: UDPMurNAc-L-Ala-γ-D-Glu-X-D-Ala-D-Ala (X = L-Lys or m-DAP) is the cytoplasmic precursor for the lipid-linked cycle of bacterial peptidoglycan biosynthesis, consisting of at least four enzymatic reactions, which are targets for antibacterial agents. Fluorescent derivatives of the UDPMurNAc-pentapeptide labelled at the 3rd, 4th, and 5th position of the peptide chain were prepared chemoenzymatically, in order to study the reactions catalysed by enzymes in this cycle. Derivatives labelled on the e-amino group of the 3rd amino acid (N-dansyl, N-fluorescamine and N-phthalaldehyde) were prepared by chemical modification. Two methods were developed for preparation of analogues of UDPMurNAc-pentapeptide containing D-cysteine at position 4 or 5: either by MurF-catalysed ligation of the UDPMurNAc-tripeptide to synthetic D-Ala-D-Cys or D-Cys-D-Ala dipeptides; or by enzymatic synthesis of D-Ala-D-Cys by ligase VanD. D-Cys-containing UDPMurNAc-pentapeptides were labelled with pyrene maleimide, to give 4-pyrene and 5-pyrene labelled derivatives. The fluorescent UDPMurNAc-pentapeptides were processed as substrates by Escherichia coli MraY or E. coli membranes, giving 1.5–150-fold changes in fluorescence upon transformation to lipid intermediate I. Subsequent processing to lipid intermediate II gave rise only to small changes in fluorescence. Pyrene-labelled lipid intermediates I and II can be generated using Micrococcus flavus membranes, enabling the study of the later lipid-linked steps.