scispace - formally typeset
Search or ask a question

Showing papers in "Pflügers Archiv: European Journal of Physiology in 2007"


Journal ArticleDOI
TL;DR: A review of state-of-the-art knowledge on the composition and functions of the endothelial glycocalyx can be found in this article, where the contribution of the glyocalyx to diabetes, ischemia/reperfusion, and atherosclerosis is also reviewed.
Abstract: This review aims at presenting state-of-the-art knowledge on the composition and functions of the endothelial glycocalyx. The endothelial glycocalyx is a network of membrane-bound proteoglycans and glycoproteins, covering the endothelium luminally. Both endothelium- and plasma-derived soluble molecules integrate into this mesh. Over the past decade, insight has been gained into the role of the glycocalyx in vascular physiology and pathology, including mechanotransduction, hemostasis, signaling, and blood cell–vessel wall interactions. The contribution of the glycocalyx to diabetes, ischemia/reperfusion, and atherosclerosis is also reviewed. Experimental data from the micro- and macrocirculation alludes at a vasculoprotective role for the glycocalyx. Assessing this possible role of the endothelial glycocalyx requires reliable visualization of this delicate layer, which is a great challenge. An overview is given of the various ways in which the endothelial glycocalyx has been visualized up to now, including first data from two-photon microscopic imaging.

1,481 citations


Journal ArticleDOI
TL;DR: It is demonstrated that hypoxia induces extensive changes in human adipocytes in the expression and release of inflammation-related adipokines, leading to obesity-associated diseases.
Abstract: The effect of hypoxia, induced by incubation under low (1%) oxygen tension or by exposure to CoCl2, on the expression and secretion of inflammation-related adipokines was examined in human adipocytes. Hypoxia led to a rapid and substantial increase (greater than sevenfold by 4 h of exposure to 1% O2) in the hypoxia-sensitive transcription factor, HIF-1α, in human adipocytes. This was accompanied by a major increase (up to 14-fold) in GLUT1 transporter mRNA level. Hypoxia (1% O2 or CoCl2) led to a reduction (up to threefold over 24 h) in adiponectin and haptoglobin mRNA levels; adiponectin secretion also decreased. No changes were observed in TNFα expression. In contrast, hypoxia resulted in substantial increases in FIAF/angiopoietin-like protein 4, IL-6, leptin, MIF, PAI-1 and vascular endothelial growth factor (VEGF) mRNA levels. The largest increases were with FIAF (maximum 210-fold), leptin (maximum 29-fold) and VEGF (maximum 23-fold); these were reversed on return to normoxia. The secretion of IL-6, leptin, MIF and VEGF from the adipocytes was also stimulated by exposure to 1% O2. These results demonstrate that hypoxia induces extensive changes in human adipocytes in the expression and release of inflammation-related adipokines. Hypoxia may underlie the development of the inflammatory response in adipocytes, leading to obesity-associated diseases.

388 citations


Journal ArticleDOI
TL;DR: The transcriptional and posttranscriptional regulation of ABCC2 is discussed and approaches to the functional analysis providing information on its substrate specificity are reviewed, particularly in the unidirectional efflux of substances conjugal with glutathione, glucuronate, or sulfate.
Abstract: ABCC2 is a member of the multidrug resistance protein subfamily localized exclusively to the apical membrane domain of polarized cells, such as hepatocytes, renal proximal tubule epithelia, and intestinal epithelia. This localization supports the function of ABCC2 in the terminal excretion and detoxification of endogenous and xenobiotic organic anions, particularly in the unidirectional efflux of substances conjugated with glutathione, glucuronate, or sulfate, as exemplified by leukotriene C(4), bilirubin glucuronosides, and some steroid sulfates. The hepatic ABCC2 pump contributes to the driving forces of bile flow. Acquired or hereditary deficiency of ABCC2, the latter known as Dubin-Johnson syndrome in humans, causes an increased concentration of bilirubin glucuronosides in blood because of their efflux from hepatocytes via the basolateral ABCC3, which compensates for the deficiency in ABCC2-mediated apical efflux. In this article we provide an overview on the molecular characteristics of ABCC2 and its expression in various tissues and species. We discuss the transcriptional and posttranscriptional regulation of ABCC2 and review approaches to the functional analysis providing information on its substrate specificity. A comprehensive list of sequence variants in the human ABCC2 gene summarizes predicted and proven functional consequences, including variants leading to Dubin-Johnson syndrome.

363 citations


Journal ArticleDOI
TL;DR: The recently published results on multidrug resistance-associated proteins 3, 4, and 5 (MRPs 3–5) are summarized and the physiological importance of cyclic nucleotide transport by MRP4 and 5 remains to be determined.
Abstract: We summarize in this paper the recently published results on multidrug resistance-associated proteins 3, 4, and 5 (MRPs 3-5). MRP3 can transport organic compounds conjugated to glutathione, sulfate, or glucuronate, such as estradiol-17beta-glucuronide, bilirubin-glucuronides, and etoposide-glucuronide, and also bile salts and methotrexate. Studies in knockout mice have shown that Mrp3 contributes to the transport of morphine-3-glucuronide and acetaminophen-glucuronide from the liver into blood. There is no evidence for a major role of MRP3 in bile salt metabolism, at least in mice. The function of MRP3 in other tissues, notably the gut and the adrenal cortex, remains to be defined. MRP4 and MRP5 have attracted attention by their ability to transport cyclic nucleotides and many nucleotide analogs. The initial reports that MRP4 and 5 can transport cGMP with microM affinity have not been confirmed in recent work and the physiological importance of cyclic nucleotide transport by MRP4 and 5 remains to be determined. Transfected cells containing high concentrations of MRP4 and 5 are moderately resistant to base, nucleoside, and nucleotide analogs. The affinity of both transporters for nucleotide analogs is low (K (m) around 1 mM) and there is no evidence that the transport of these compounds results in resistance in vivo. The physiological function of MRP4 and 5 remains to be found.

286 citations


Journal ArticleDOI
TL;DR: Drosophila visual transduction appears to have particular relevance to the cascade in the intrinsically photosensitive retinal ganglion cells in mammals, as the photoresponse in these latter cells appears to operate through a remarkably similar mechanism.
Abstract: Drosophila visual transduction is the fastest known G-protein-coupled signaling cascade and has therefore served as a genetically tractable animal model for characterizing rapid responses to sensory stimulation. Mutations in over 30 genes have been identified, which affect activation, adaptation, or termination of the photoresponse. Based on analyses of these genes, a model for phototransduction has emerged, which involves phosphoinoside signaling and culminates with opening of the TRP and TRPL cation channels. Many of the proteins that function in phototransduction are coupled to the PDZ containing scaffold protein INAD and form a supramolecular signaling complex, the signalplex. Arrestin, TRPL, and Gαq undergo dynamic light-dependent trafficking, and these movements function in long-term adaptation. Other proteins play important roles either in the formation or maturation of rhodopsin, or in regeneration of phosphatidylinositol 4,5-bisphosphate (PIP2), which is required for the photoresponse. Mutation of nearly any gene that functions in the photoresponse results in retinal degeneration. The underlying bases of photoreceptor cell death are diverse and involve mechanisms such as excessive endocytosis of rhodopsin due to stable rhodopsin/arrestin complexes and abnormally low or high levels of Ca2+. Drosophila visual transduction appears to have particular relevance to the cascade in the intrinsically photosensitive retinal ganglion cells in mammals, as the photoresponse in these latter cells appears to operate through a remarkably similar mechanism.

276 citations


Journal ArticleDOI
TL;DR: It is now recognized that the cells responding to sweet, bitter, and umami taste stimuli do not possess synapses and instead secrete the neurotransmitter ATP via a novel mechanism not involving conventional vesicular exocytosis, which suggests that there is important information processing and signal coding taking place in the mammalian taste bud after gustatory stimulation.
Abstract: The molecular machinery for chemosensory transduction in taste buds has received considerable attention within the last decade. Consequently, we now know a great deal about sweet, bitter, and umami taste mechanisms and are gaining ground rapidly on salty and sour transduction. Sweet, bitter, and umami tastes are transduced by G-protein-coupled receptors. Salty taste may be transduced by epithelial Na channels similar to those found in renal tissues. Sour transduction appears to be initiated by intracellular acidification acting on acid-sensitive membrane proteins. Once a taste signal is generated in a taste cell, the subsequent steps involve secretion of neurotransmitters, including ATP and serotonin. It is now recognized that the cells responding to sweet, bitter, and umami taste stimuli do not possess synapses and instead secrete the neurotransmitter ATP via a novel mechanism not involving conventional vesicular exocytosis. ATP is believed to excite primary sensory afferent fibers that convey gustatory signals to the brain. In contrast, taste cells that do have synapses release serotonin in response to gustatory stimulation. The postsynaptic targets of serotonin have not yet been identified. Finally, ATP secreted from receptor cells also acts on neighboring taste cells to stimulate their release of serotonin. This suggests that there is important information processing and signal coding taking place in the mammalian taste bud after gustatory stimulation.

274 citations


Journal ArticleDOI
TL;DR: The success in which the mouse has served as a vertebrate model for studying rod phototransduction, with respect to both the activation and termination steps is provided.
Abstract: Phototransduction is the process by which light triggers an electrical signal in a photoreceptor cell. Image-forming vision in vertebrates is mediated by two types of photoreceptors: the rods and the cones. In this review, we provide a summary of the success in which the mouse has served as a vertebrate model for studying rod phototransduction, with respect to both the activation and termination steps. Cones are still not as well-understood as rods partly because it is difficult to work with mouse cones due to their scarcity and fragility. The situation may change, however.

269 citations


Journal ArticleDOI
TL;DR: The functional aspects of ABCB4 and the regulation of its expression are discussed, and the clinical and biochemical consequences of complete and partial deficiency ofABCB4 function are described.
Abstract: Like several other ATP-binding cassette (ABC) transporters, ABCB4 is a lipid translocator. It translocates phosphatidylcholine (PC) from the inner to the outer leaflet of the canalicular membrane of the hepatocyte. Its function is quite crucial as evidenced by a severe liver disease, progressive familial intrahepatic cholestasis type 3, which develops in persons with ABCB4 deficiency. Translocation of PC makes the phospholipid available for extraction into the canalicular lumen by bile salts. The primary function of biliary phospholipid excretion is to protect the membranes of cells facing the biliary tree against these bile salts: the uptake of PC in bile salt micelles reduces the detergent activity of these micelles. In this review, we will discuss the functional aspects of ABCB4 and the regulation of its expression. Furthermore, we will describe the clinical and biochemical consequences of complete and partial deficiency of ABCB4 function.

248 citations


Journal ArticleDOI
TL;DR: Results imply that, as opposed to current concepts, TRPC1 is not an obligatory component of store-operated and stretch-activated ion channel complexes in vascular smooth muscle cells.
Abstract: Among the classical transient receptor potential (TRPC) subfamily, TRPC1 is described as a mechanosensitive and store-operated channel proposed to be activated by hypoosmotic cell swelling and positive pipette pressure as well as regulated by the filling status of intracellular Ca(2+) stores. However, evidence for a physiological role of TRPC1 may most compellingly be obtained by the analysis of a TRPC1-deficient mouse model. Therefore, we have developed and analyzed TRPC1(-/-) mice. Pressure-induced constriction of cerebral arteries was not impaired in TRPC1(-/-) mice. Smooth muscle cells from cerebral arteries activated by hypoosmotic swelling and positive pipette pressure showed no significant differences in cation currents compared to wild-type cells. Moreover, smooth muscle cells of TRPC1(-/-) mice isolated from thoracic aortas and cerebral arteries showed no change in store-operated cation influx induced by thapsigargin, inositol-1,4,5 trisphosphate, and cyclopiazonic acid compared to cells from wild-type mice. In contrast to these results, small interference RNAs decreasing the expression of stromal interaction molecule 1 (STIM1) inhibited thapsigargin-induced store-operated cation influx, demonstrating that STIM1 and TRPC1 are mutually independent. These findings also imply that, as opposed to current concepts, TRPC1 is not an obligatory component of store-operated and stretch-activated ion channel complexes in vascular smooth muscle cells.

246 citations


Journal ArticleDOI
TL;DR: Almost 25 years of biochemistry is reviewed in light of the recent structure analyses resulting in the ATP-switch model for function in which the NBDs switch between a dimeric conformation, closed around two molecules of ATP, and a nucleotide-free, dimeric ‘open’ conformation.
Abstract: ATP-binding cassette (ABC) transporters are ubiquitous integral membrane proteins that facilitate the transbilayer movement of ligands. They comprise, minimally, two transmembrane domains, which impart ligand specificity, and two nucleotide-binding domains (NBDs), which power the transport cycle. Almost 25 years of biochemistry is reviewed in light of the recent structure analyses resulting in the ATP-switch model for function in which the NBDs switch between a dimeric conformation, closed around two molecules of ATP, and a nucleotide-free, dimeric 'open' conformation. The flexibility of this switching mechanism has evolved to provide different kinetic control for different transporters and has also been co-opted to diverse functions other than transmembrane transport.

220 citations


Journal ArticleDOI
TL;DR: Canalicular secretion of bile salts mediated by the bile salt export pump Bsep constitutes the major driving force for the generation of biles flow, and is extensively regulated at the transcriptional and posttranscriptional level, which directly modulates canalicular bile formation.
Abstract: Canalicular secretion of bile salts mediated by the bile salt export pump Bsep constitutes the major driving force for the generation of bile flow. Bsep is a member of the B-family of the super family of ATP-binding cassette transporters and is classified as ABCB11. Bsep has a narrow substrate specificity, which is largely restricted to bile salts. Bsep is extensively regulated at the transcriptional and posttranscriptional level, which directly modulates canalicular bile formation. Pathophysiological alterations of Bsep by either inherited mutations or acquired processes such as inhibition by drugs or disease-related down regulation may lead to a wide spectrum of mild to severe forms of liver disease. Furthermore, many genetic variants of Bsep are known, some of which potentially render individuals susceptible to acquired forms of liver disease.

Journal ArticleDOI
TL;DR: The importance of sex hormones in regulation of a variety of renal transport functions is emphasized and further studies of gender-related differences in kidney structure and functions are initiated to better understand occurrence and development of various renal diseases, pharmacotherapy, and drug-induced nephrotoxicity in humans and animals.
Abstract: Sex hormones influence the development of female (F) and male (M) specific traits and primarily affect the structure and function of gender-specific organs. Recent studies also indicated their important roles in regulating structure and/or function of nearly every tissue and organ in the mammalian body, including the kidneys, causing gender differences in a variety of characteristics. Clinical observations in humans and studies in experimental animals in vivo and in models in vitro have shown that renal structure and functions under various physiological, pharmacological, and toxicological conditions are different in M and F, and that these differences may be related to the sex-hormone-regulated expression and action of transporters in the apical and basolateral membrane of nephron epithelial cells. In this review we have collected published data on gender differences in renal functions, transporters and other related parameters, and present our own microarray data on messenger RNA expression for various transporters in the kidney cortex of M and F rats. With these data we would like to emphasize the importance of sex hormones in regulation of a variety of renal transport functions and to initiate further studies of gender-related differences in kidney structure and functions, which would enable us to better understand occurrence and development of various renal diseases, pharmacotherapy, and drug-induced nephrotoxicity in humans and animals.

Journal ArticleDOI
TL;DR: The effects of mechanosensory and ciliary mutations on antennal mechanics show that the sensory cilia are the active motor elements and indicate distinct roles for TRPN and TRPV channels in auditory transduction and amplification.
Abstract: Insects are utterly reliant on sensory mechanotransduction, the process of converting physical stimuli into neuronal receptor potentials. The senses of proprioception, touch, and hearing are involved in almost every aspect of an adult insect’s complex behavioral repertoire and are mediated by a diverse array of specialized sensilla and sensory neurons. The physiology and morphology of several of these have been described in detail; genetic approaches in Drosophila, combining behavioral screens and sensory electrophysiology with forward and reverse genetic techniques, have now revealed specific proteins involved in their differentiation and operation. These include three different TRP superfamily ion channels that are required for transduction in tactile bristles, chordotonal stretch receptors, and polymodal nociceptors. Transduction also depends on the normal differentiation and mechanical integrity of the modified cilia that form the neuronal sensory endings, the accessory structures that transmit stimuli to them and, in bristles, a specialized receptor lymph and transepithelial potential. Flies hear near-field sounds with a vibration-sensitive, antennal chordotonal organ. Biomechanical analyses of wild-type antennae reveal non-linear, active mechanical properties that increase their sensitivity to weak stimuli. The effects of mechanosensory and ciliary mutations on antennal mechanics show that the sensory cilia are the active motor elements and indicate distinct roles for TRPN and TRPV channels in auditory transduction and amplification.

Journal ArticleDOI
TL;DR: Investigating the role of extracellular signal regulated kinase (ERK1/2) and phosphatidylinositol 3-kinase (PI3K)/Akt in SP-induced cardioprotection found that preconditioning with NaHS for three cycles significantly decreased myocardial infarct size and improved heart contractile function in the isolated rat hearts.
Abstract: We previously reported that hydrogen sulfide (H2S) preconditioning (SP) produces cardioprotective effects against ischemia in rat cardiac myocytes. The present study aims to elucidate the signaling mechanisms involved in SP-induced cardioprotection by investigating the role of extracellular signal regulated kinase (ERK1/2) and phosphatidylinositol 3-kinase (PI3K)/Akt. We found that preconditioning with NaHS (a H2S donor) for three cycles significantly decreased myocardial infarct size and improved heart contractile function in the isolated rat hearts. NaHS (1–100 μM) concentration-dependently increased cell viability and percentage of rod-shaped cardiac myocytes. Blockade of ERK1/2 with PD 98059 or PI3K/Akt with LY-294002 or Akt inhibitor III during either preconditioning or ischemia periods significantly attenuated the cardioprotection of SP, suggesting that both ERK1/2 and PI3K/Akt triggered and mediated the cardioprotection of SP. Moreover, SP induced ERK1/2 and Akt phosphorylation in isolated hearts. The phosphorylation of ERK1/2 induced by SP was attenuated by either glibenclamide, an ATP-sensitive K+ channel (KATP) blocker, or chelerythrine, a specific protein kinase C (PKC) blocker. In addition, ischemic-preconditioning-induced ERK1/2 activation was reversed by inhibiting endogenous H2S production, suggesting that ERK1/2 activation induced by ischemic preconditioning was, at least partly, mediated by endogenous H2S. In conclusion, KATP/PKC/ERK1/2 and PI3K/Akt pathways contributed to SP-induced cardioprotection.

Journal ArticleDOI
TL;DR: This review intends to provide a condensed overview on the molecular mechanisms of mitochondrial Ca2+ homeostasis (uptake, buffering and storage, extrusion), its modulation by other ions, kinases and small molecules, and its contribution to cellular processes as fundamental basis for the organelle’s contribution to signaling pathways.
Abstract: Mitochondria are ancient endosymbiotic guests that joined the cells in the evolution of complex life. While the unique ability of mitochondria to produce adenosine triphosphate (ATP) and their contribution to cellular nutrition metabolism received condign attention, our understanding of the organelle’s contribution to Ca2+ homeostasis was restricted to serve as passive Ca2+ sinks that accumulate Ca2+ along the organelle’s negative membrane potential. This paradigm has changed radically. Nowadays, mitochondria are known to respond to environmental Ca2+ and to contribute actively to the regulation of spatial and temporal patterns of intracellular Ca2+ signaling. Accordingly, mitochondria contribute to many signal transduction pathways and are actively involved in the maintenance of capacitative Ca2+ entry, the accomplishment of Ca2+ refilling of the endoplasmic reticulum and Ca2+-dependent protein folding. Mitochondrial Ca2+ homeostasis is complex and regulated by numerous, so far, genetically unidentified Ca2+ channels, pumps and exchangers that concertedly accomplish the organelle’s Ca2+ demand. Notably, mitochondrial Ca2+ homeostasis and functions are crucially influenced by the organelle’s structural organization and motility that, in turn, is controlled by matrix/cytosolic Ca2+. This review intends to provide a condensed overview on the molecular mechanisms of mitochondrial Ca2+ homeostasis (uptake, buffering and storage, extrusion), its modulation by other ions, kinases and small molecules, and its contribution to cellular processes as fundamental basis for the organelle’s contribution to signaling pathways. Hence, emphasis is given to the structure-to-function and mobility-to-function relationship of the mitochondria and, thereby, bridging our most recent knowledge on mitochondria with the best-established mitochondrial function: metabolism and ATP production.

Journal ArticleDOI
TL;DR: It is proposed that S100A10 functions as a linker tethering certain transmembrane proteins to annexin A2 thereby assisting their traffic to the plasma membrane and/or their firm anchorage at certain membrane sites.
Abstract: S100A10, also known as p11 or annexin 2 light chain, is a member of the S100 family of small, dimeric EF hand-type Ca2+-binding proteins that generally modulate cellular target proteins in response to intracellular Ca2+ signals. In contrast to all other S100 proteins, S100A10 is Ca2+ insensitive because of amino acid replacements in its Ca2+-binding loops that lock the protein in a permanently active state. Within cells, the majority of S100A10 resides in a tight heterotetrameric complex with the peripheral membrane-binding protein annexin A2 that directs the complex to specific target membranes, in particular the plasma membrane and the membrane of early endosomes. Several other Ca2+-independent interaction partners of S100A10 have been described in the recent past. Many of these interactions, which have been shown to be of functional significance for the respective partner, involve plasma membrane-resident proteins. In most of these cases, S100A10, probably residing in a complex with annexin A2, appears to regulate the intracellular trafficking of the respective target protein and thus its functional expression at the cell surface. In this paper, we review the current information on S100A10 protein interactions placing a particular emphasis on data that contribute to an understanding of the mechanistic basis of the S100A10 action. Based on these data, we propose that S100A10 functions as a linker tethering certain transmembrane proteins to annexin A2 thereby assisting their traffic to the plasma membrane and/or their firm anchorage at certain membrane sites.

Journal ArticleDOI
David M. Berson1
TL;DR: The overwhelming evidence that melanopsin serves as the photopigment in these cells is summarized and the emerging evidence that the downstream signaling cascade, including the light-gated channel, might resemble those found in rhabdomeric invertebrate photoreceptors is reviewed.
Abstract: A third class of photoreceptors has recently been identified in the mammalian retina. They are a rare cell type within the class of ganglion cells, which are the output cells of the retina. These intrinsically photosensitive retinal ganglion cells support a variety of physiological responses to daylight, including synchronization of circadian rhythms, modulation of melatonin release, and regulation of pupil size. The goal of this review is to summarize what is currently known concerning the cellular and biochemical basis of phototransduction in these cells. I summarize the overwhelming evidence that melanopsin serves as the photopigment in these cells and review the emerging evidence that the downstream signaling cascade, including the light-gated channel, might resemble those found in rhabdomeric invertebrate photoreceptors.

Journal ArticleDOI
TL;DR: An overview of the considerable amount of knowledge which has accumulated since the discovery of MRP1 is given, with special emphasis on the structural features essential for function, the recent understanding of the transport mechanism, and the numerous assignments of this transporter.
Abstract: MRP1 (ABCC1) is a peculiar member of the ABC transporter superfamily for several aspects. This protein has an unusually broad substrate specificity and is capable of transporting not only a wide variety of neutral hydrophobic compounds, like the MDR1/P-glycoprotein, but also facilitating the extrusion of numerous glutathione, glucuronate, and sulfate conjugates. The transport mechanism of MRP1 is also complex; a composite substrate-binding site permits both cooperativity and competition between various substrates. This versatility and the ubiquitous tissue distribution make this transporter suitable for contributing to various physiological functions, including defense against xenobiotics and endogenous toxic metabolites, leukotriene-mediated inflammatory responses, as well as protection from the toxic effect of oxidative stress. In this paper, we give an overview of the considerable amount of knowledge which has accumulated since the discovery of MRP1 in 1992. We place special emphasis on the structural features essential for function, our recent understanding of the transport mechanism, and the numerous assignments of this transporter.

Journal ArticleDOI
TL;DR: Studies on KATP channel null mice are clarifying the roles of these metabolically sensitive channels in a variety of tissues, including endocrine cells, neurons, and both smooth and striated muscle.
Abstract: The sulfonylurea receptors (SURs) ABCC8/SUR1 and ABCC9/SUR2 are members of the C-branch of the transport adenosine triphosphatase superfamily. Unlike their brethren, the SURs have no identified transport function; instead, evolution has matched these molecules with K+ selective pores, either KIR6.1/KCNJ8 or KIR6.2/KCNJ11, to assemble adenosine triphosphate (ATP)-sensitive K+ channels found in endocrine cells, neurons, and both smooth and striated muscle. Adenine nucleotides, the major regulators of ATP-sensitive K+ (KATP) channel activity, exert a dual action. Nucleotide binding to the pore reduces the activity or channel open probability, whereas Mg-nucleotide binding and/or hydrolysis in the nucleotide-binding domains of SUR antagonize this inhibitory action to stimulate channel openings. Mutations in either subunit can alter this balance and, in the case of the SUR1/KIR6.2 channels found in neurons and insulin-secreting pancreatic β cells, are the cause of monogenic forms of hyperinsulinemic hypoglycemia and neonatal diabetes. Additionally, the subtle dysregulation of KATP channel activity by a KIR6.2 polymorphism has been suggested as a predisposing factor in type 2 diabetes mellitus. Studies on KATP channel null mice are clarifying the roles of these metabolically sensitive channels in a variety of tissues.

Journal ArticleDOI
TL;DR: Unlike other members, ABCG2 is not involved in cholesterol efflux, but it exhibits broad substrate specificity to xenobiotic compounds, and plays a critical role in the pharmacokinetics of drugs in the clearance organs and tissue barriers.
Abstract: This review summarizes the characteristics of the ATP-binding cassette, subfamily G (ABCG family), which has five members: ABCG1, ABCG2, ABCG4, ABCG5, and ABCG8. The members consist of a single ABC cassette in the amino terminal followed by six putative transmembrane domains, and to become functionally active, they form homo- or obligate heterodimers. Except for ABCG2, the members of the ABCG family play an important role in efflux transport of cholesterol. Mutations causing a loss of function of ABCG5 or ABCG8 are associated with sitosterolemia characterized by accumulation of phyto- and shellfish sterols. Unlike other members, ABCG2 is not involved in cholesterol efflux, but it exhibits broad substrate specificity to xenobiotic compounds. ABCG2 confers cancer cells resistance to anticancer drugs and plays a critical role in the pharmacokinetics of drugs in the clearance organs and tissue barriers. ABCG2 is also associated with a subpopulation phenotype of stem cells. Genetic polymorphisms of ABCG2 have been suggested to account for the interindividual differences in the pharmacokinetics of drugs.

Journal ArticleDOI
TL;DR: The MRP7, MRP8, and MRP9 (gene symbols ABCC10, ABCC11, and ABCC12) are recently identified members of the MRP family that are at relatively early stages of investigation as discussed by the authors.
Abstract: Multidrug resistance protein (MRP)7, MRP8, and MRP9 (gene symbols ABCC10, ABCC11, and ABCC12) are recently identified members of the MRP family that are at relatively early stages of investigation. Of these proteins, a physiological function has only been established for MRP8, for which a single nucleotide polymorphism determines wet vs dry earwax type. MRP7 and MRP8 are lipophilic anion pumps that are able to confer resistance to chemotherapeutic agents. MRP7 is competent in the transport of the glucuronide E(2)17betaG, and its resistance profile, which includes several natural product anticancer agents, is distinguished by the taxane docetaxel. MRP8 is able to transport a diverse range of lipophilic anions, including cyclic nucleotides, E(2)17betaG, steroid sulfates such as dehydroepiandrosterone (DHEAS) and E(1)S, glutathione conjugates such as leukotriene C4 and dinitrophenyl-S-glutathione, and monoanionic bile acids. However, the constituent of earwax that is susceptible to transport by MRP8 has not been identified. MRP8 has complex interactions with its substrates, as indicated by the nonreciprocal ability of DHEAS to stimulate E(2)17betaG transport. Similar to the case for other MRPs that possess only two membrane spanning domains (MRP4 and MRP5), MRP8 is a cyclic nucleotide efflux pump that is able to confer resistance to nucleoside-based agents, such as PMEA and 5FU. The functional characteristics of MRP9 are currently unknown.

Journal ArticleDOI
TL;DR: S sustained MVCs produce greater central fatigue and a more pronounced ‘cross-over’ of effects to the contralateral limb for men compared to women, demonstrating distinct differences between sexes in the way the nervous system adapts to changes associated with fatigue.
Abstract: A sustained voluntary contraction increases central fatigue and produces a 'cross-over' of fatigue during a subsequent contraction of the contralateral limb. These studies compared the magnitude of these changes for men and women. Force and electromyographic responses from dominant (study 1; n = 8 men, 8 women) or non-dominant (study 2; n = 7 men, 8 women) leg extensors to nerve stimulation were recorded at rest and during brief maximal voluntary contractions (MVCs), before and after 100-s sustained MVCs performed with the dominant leg. For the dominant leg, force was reduced more for men (by approximately 24%) than women (by approximately 16%, P 0.05). For the non-dominant leg, men experienced a reduction in force (by approximately 13%, P < 0.001) and had greater deficits in activation than women ( approximately 9% vs approximately 3%, P < 0.05), after sustained contractions of the dominant leg. Therefore, sustained MVCs produce greater central fatigue and a more pronounced 'cross-over' of effects to the contralateral limb for men compared to women. These findings demonstrate distinct differences between sexes in the way the nervous system adapts to changes associated with fatigue.

Journal ArticleDOI
TL;DR: It is concluded that electroporation is a simple approach that permits Ca2+ indicator loading of multiple cells with low background staining within a short amount of time, which makes it especially well suited for functional imaging of subcellular Ca 2+ dynamics in small neuronal networks.
Abstract: Studies of subcellular Ca(2+) signaling rely on methods for labeling cells with fluorescent Ca(2+) indicator dyes. In this study, we demonstrate the use of single-cell electroporation for Ca(2+) indicator loading of individual neurons and small neuronal networks in rat neocortex in vitro and in vivo. Brief voltage pulses were delivered through glass pipettes positioned close to target cells. This approach resulted in reliable and rapid (within seconds) loading of somata and subsequent complete labeling of dendritic and axonal arborizations. By using simultaneous whole-cell recordings in brain slices, we directly addressed the effect of electroporation on neurons. Cell viability was high (about 85%) with recovery from the membrane permeabilization occurring within a minute. Electrical properties of recovered cells were indistinguishable before and after electroporation. In addition, Ca(2+) transients with normal appearance could be evoked in dendrites, spines, and axonal boutons of electroporated cells. Using negative-stains of somata, targeted single-cell electroporation was equally applicable in vivo. We conclude that electroporation is a simple approach that permits Ca(2+) indicator loading of multiple cells with low background staining within a short amount of time, which makes it especially well suited for functional imaging of subcellular Ca(2+) dynamics in small neuronal networks.

Journal ArticleDOI
TL;DR: It is suggested that synaptically released glutamate activates glutamate/Na+ transporter in Bergmann glial cells, which produces a substantial increase in intracellular Na+ concentration.
Abstract: Effects of glutamate and kainate (KA) on Bergmann glial cells were investigated in mouse cerebellar slices using the whole-cell configuration of the patch-clamp technique combined with SBFI-based Na+ microfluorimetry. l-Glutamate (1 mM) and KA (100 μM) induced inward currents in Bergmann glial cells voltage-clamped at −70 mV. These currents were accompanied by an increase in intracellular Na+ concentration ([Na+]i) from the average resting level of 5.2 ± 0.5 mM to 26 ± 5 mM and 33 ± 7 mM, respectively. KA-evoked signals (1) were completely blocked in the presence of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 μM), an antagonist of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/KA ionotropic glutamate receptors; (2) reversed at 0 mV, and (3) disappeared in Na+-free, N-methyl-D-glucamine (NMDG+)-containing solution, but remained almost unchanged in Na+-free, Li+-containing solution. Conversely, l-glutamate-induced signals (1) were marginally CNQX sensitive (∼10% inhibition), (2) did not reverse at a holding potential of +20 mV, (3) were markedly suppressed by Na+ substitution with both NMDG+ and Li+, and (4) were inhibited by d,l-threo-β-benzyloxyaspartate. Further, d-glutamate, l-, and d-aspartate were also able to induce Na+-dependent inward current. Stimulation of parallel fibres triggered inward currents and [Na+]i transients that were insensitive to CNQX and MK-801; hence, we suggested that synaptically released glutamate activates glutamate/Na+ transporter in Bergmann glial cells, which produces a substantial increase in intracellular Na+ concentration.

Journal ArticleDOI
TL;DR: Mechanisms of modulation of TRP channels mainly by PIP2 are described and some future challenges of this fascinating topic are discussed.
Abstract: This review summarizes the modulation of transient receptor potential (TRP) channels, by phosphoinositides. TRP channels are characterized by polymodal activation and a surprising complexity of regulation mechanisms. Possibly, most if not all TRP channels are modulated by phosphoinositides. Modulation by phosphatidylinositol 4,5-biphosphate (PIP2) has been shown in detail for TRP vanilloid (TRPV) 1, TRPV5, TRP melastatin (TRPM) 4, TRPM5, TRPM7, TRPM8, TRP polycystin 2, and the Drosophila TPR-like (TRPL) channels. This review describes mechanisms of modulation of TRP channels mainly by PIP2 and discusses some future challenges of this fascinating topic.

Journal ArticleDOI
TL;DR: This work has mapped onto the three-dimensional channel structure the position of basic residues identified through mutagenesis studies that contribute to the sensitivity of a Kir channel to PIP2, and given rise to a testable model, which could account for channel activation by PIP1.
Abstract: Phosphoinositides, such as phosphatidylinositol-bisphosphate (PIP(2)), control the activity of many ion channels in yet undefined ways. Inwardly, rectifying potassium (Kir) channels were the first shown to be dependent on direct interactions with phosphoinositides. Alterations in channel-PIP(2) interactions affect Kir single-channel gating behavior. Aberrations in channel-PIP(2) interactions can lead to human disease. As the activity of all Kir channels depends on their interactions with phosphoinositides, future research will aim to understand the molecular events that occur from phosphoinositide binding to channel gating. The determination of atomic resolution structures for several mammalian and bacterial Kir channels provides great promise towards this goal. We have mapped onto the three-dimensional channel structure the position of basic residues identified through mutagenesis studies that contribute to the sensitivity of a Kir channel to PIP(2). The localization of these putative PIP(2)-interacting residues relative to the channel's permeation pathway has given rise to a testable model, which could account for channel activation by PIP(2).

Journal ArticleDOI
TL;DR: The characteristic and specific features of adaptive response to hypertonicity are illustrated and similarities to and differences from other cellular stresses, such as genotoxic agents, nutrient starvation and heat shock are described.
Abstract: Cellular responses induced by stress are essential for the survival of cells under adverse conditions. These responses, resulting in cell adaptation to the stress, are accomplished by a variety of processes at the molecular level. After an alteration in homeostatic conditions, intracellular signalling processes link the sensing mechanism to adaptive or compensatory changes in gene expression. The ability of cells to adapt to hyperosmotic stress involves early responses in which ions move across cell membranes and late responses characterized by increased synthesis of either membrane transporters essential for uptake of organic osmolytes or of enzymes involved in their synthesis. The goal of these responses is to return the cell to its normal size and maintain cellular homeostasis. The enhanced synthesis of molecular chaperones, such as heat shock proteins, is another important component of the adaptive process that contributes to cell survival. Some responses are common to different stresses, whereas others are specific. In the first part of the review, we illustrate the characteristic and specific features of adaptive response to hypertonicity; we then describe similarities to and differences from other cellular stresses, such as genotoxic agents, nutrient starvation and heat shock.

Journal ArticleDOI
TL;DR: The availability of mutant mice in which Abcd1, Abcd2, or Abcd3 have been disrupted will help to resolve the true role of the peroxisomal half-ABC transporters.
Abstract: This review describes the current state of knowledge about the ABCD family of peroxisomal half adenosine-triphosphate-binding cassette (ABC) transporters. ABCDs are predicted to be present in a variety of eukaryotic organisms, although at present, only ABCDs in the yeast Saccharomyces cerevisiae, the plant Arabidopsis thaliana, and different mammalian species have been identified and characterized to any significant extent. The functional role of none of these ABCDs has been established definitively and awaits successful reconstitution of ABCDs, either as homo- or heterodimers into liposomes, followed by transport studies. Data obtained in S. cerevisiae suggest that the two ABCDs, which have been identified in this organism, form a heterodimer, which actually transports acyl coenzyme A esters across the peroxisomal membrane. In mammals, four ABCDs have been identified, of which one [adrenoleukodystrophy protein (ALDP)] has been implicated in the transport of the coenzyme A esters of very-long-chain fatty acids. Mutations in the gene (ABCD1) encoding ALDP are the cause of a severe X-linked disease, called X-linked adrenoleukodystrophy. The availability of mutant mice in which Abcd1, Abcd2, or Abcd3 have been disrupted will help to resolve the true role of the peroxisomal half-ABC transporters.

Journal ArticleDOI
TL;DR: The objective of this review is to summarize the literature for this subfamily of ABC transporter proteins, excluding ABCA1 and ABCA4, which will be discussed in other chapters of this issue.
Abstract: To date, 12 members of the human ABCA subfamily are identified. They share a high degree of sequence conservation and have been mostly related with lipid trafficking in a wide range of body locations. Mutations in some of these genes have been described to cause severe hereditary diseases related with lipid transport, such as fatal surfactant deficiency or harlequin ichthyosis. In addition, most of them are hypothesized to participate in the subcellular sequestration of drugs, thereby being responsible for the resistance of several carcinoma cell lines against drug treatment. The objective of this review is to summarize the literature for this subfamily of ABC transporter proteins, excluding ABCA1 and ABCA4, which will be discussed in other chapters of this issue.

Journal ArticleDOI
TL;DR: This review focusses on the contribution of the choroid plexus epithelium to the water and salt homeostasis of the CSF, i.e. the secretory processes involved in CSF formation.
Abstract: The cerebrospinal fluid (CSF) provides mechanical and chemical protection of the brain and spinal cord This review focusses on the contribution of the choroid plexus epithelium to the water and salt homeostasis of the CSF, ie the secretory processes involved in CSF formation The choroid plexus epithelium is situated in the ventricular system and is believed to be the major site of CSF production Numerous studies have identified transport processes involved in this secretion, and recently, the underlying molecular background for some of the mechanisms have emerged The nascent CSF consists mainly of NaCl and NaHCO(3), and the production rate is strictly coupled to the rate of Na(+) secretion In contrast to other secreting epithelia, Na(+) is actively pumped across the luminal surface by the Na(+),K(+)-ATPase with possible contributions by other Na(+) transporters, eg the luminal Na(+),K(+),2Cl(-) cotransporter The Cl(-) and HCO(3) (-) ions are likely transported by a luminal cAMP activated inward rectified anion conductance, although the responsible proteins have not been identified Whereas Cl(-) most likely enters the cells through anion exchange, the functional as well as the molecular basis for the basolateral Na(+) entry are not yet well-defined Water molecules follow across the epithelium mainly through the water channel, AQP1, driven by the created ionic gradient In this article, the implications of the recent findings for the current model of CSF secretion are discussed Finally, the clinical implications and the prospects of future advances in understanding CSF production are briefly outlined