scispace - formally typeset
Search or ask a question

Showing papers in "Theoretical Biology and Medical Modelling in 2007"


Journal ArticleDOI
TL;DR: Dendrites are described solely on the basis of optimizing synaptic efficacy with minimal resources by employing cable theory and graph theory and it is shown how dendrites of fly neurons can be closely reconstructed based on these two principles alone.
Abstract: Background Dendrites are the most conspicuous feature of neurons. However, the principles determining their structure are poorly understood. By employing cable theory and, for the first time, graph theory, we describe dendritic anatomy solely on the basis of optimizing synaptic efficacy with minimal resources.

197 citations


Journal ArticleDOI
TL;DR: The Basic Immune Simulator effectively translates mechanistic cellular and molecular knowledge regarding the innate and adaptive immune response and reproduces the immune system's complex behavioral patterns in a generic viral infection scenario.
Abstract: We introduce the Basic Immune Simulator (BIS), an agent-based model created to study the interactions between the cells of the innate and adaptive immune system. Innate immunity, the initial host response to a pathogen, generally precedes adaptive immunity, which generates immune memory for an antigen. The BIS simulates basic cell types, mediators and antibodies, and consists of three virtual spaces representing parenchymal tissue, secondary lymphoid tissue and the lymphatic/humoral circulation. The BIS includes a Graphical User Interface (GUI) to facilitate its use as an educational and research tool. The BIS was used to qualitatively examine the innate and adaptive interactions of the immune response to a viral infection. Calibration was accomplished via a parameter sweep of initial agent population size, and comparison of simulation patterns to those reported in the basic science literature. The BIS demonstrated that the degree of the initial innate response was a crucial determinant for an appropriate adaptive response. Deficiency or excess in innate immunity resulted in excessive proliferation of adaptive immune cells. Deficiency in any of the immune system components increased the probability of failure to clear the simulated viral infection. The behavior of the BIS matches both normal and pathological behavior patterns in a generic viral infection scenario. Thus, the BIS effectively translates mechanistic cellular and molecular knowledge regarding the innate and adaptive immune response and reproduces the immune system's complex behavioral patterns. The BIS can be used both as an educational tool to demonstrate the emergence of these patterns and as a research tool to systematically identify potential targets for more effective treatment strategies for diseases processes including hypersensitivity reactions (allergies, asthma), autoimmunity and cancer. We believe that the BIS can be a useful addition to the growing suite of in-silico platforms used as an adjunct to traditional research efforts.

155 citations


Journal ArticleDOI
TL;DR: A biologically plausible model of the HPA axis bistability and hypocortisolism is developed that includes pituitary GR expression, and one consequence of increased steady state GR is reduced steady state cortisol, which has been observed in some stress related disorders such as Chronic Fatigue Syndrome.
Abstract: The body's primary stress management system is the hypothalamic pituitary adrenal (HPA) axis. The HPA axis responds to physical and mental challenge to maintain homeostasis in part by controlling the body's cortisol level. Dysregulation of the HPA axis is implicated in numerous stress-related diseases. We developed a structured model of the HPA axis that includes the glucocorticoid receptor (GR). This model incorporates nonlinear kinetics of pituitary GR synthesis. The nonlinear effect arises from the fact that GR homodimerizes after cortisol activation and induces its own synthesis in the pituitary. This homodimerization makes possible two stable steady states (low and high) and one unstable state of cortisol production resulting in bistability of the HPA axis. In this model, low GR concentration represents the normal steady state, and high GR concentration represents a dysregulated steady state. A short stress in the normal steady state produces a small perturbation in the GR concentration that quickly returns to normal levels. Long, repeated stress produces persistent and high GR concentration that does not return to baseline forcing the HPA axis to an alternate steady state. One consequence of increased steady state GR is reduced steady state cortisol, which has been observed in some stress related disorders such as Chronic Fatigue Syndrome (CFS). Inclusion of pituitary GR expression resulted in a biologically plausible model of HPA axis bistability and hypocortisolism. High GR concentration enhanced cortisol negative feedback on the hypothalamus and forced the HPA axis into an alternative, low cortisol state. This model can be used to explore mechanisms underlying disorders of the HPA axis.

112 citations


Journal ArticleDOI
TL;DR: The proposed Single Delay Model (SDM) is theoretically sound and practically robust, and can routinely be considered for the determination of insulin sensitivity from the IVGTT.
Abstract: Due to the increasing importance of identifying insulin resistance, a need exists to have a reliable mathematical model representing the glucose/insulin control system. Such a model should be simple enough to allow precise estimation of insulin sensitivity on a single patient, yet exhibit stable dynamics and reproduce accepted physiological behavior. A new, discrete Single Delay Model (SDM) of the glucose/insulin system is proposed, applicable to Intra-Venous Glucose Tolerance Tests (IVGTTs) as well as to multiple injection and infusion schemes, which is fitted to both glucose and insulin observations simultaneously. The SDM is stable around baseline equilibrium values and has positive bounded solutions at all times. Applying a similar definition as for the Minimal Model (MM) SI index, insulin sensitivity is directly represented by the free parameter KxgI of the SDM. In order to assess the reliability of Insulin Sensitivity determinations, both SDM and MM have been fitted to 40 IVGTTs from healthy volunteers. Precision of all parameter estimates is better with the SDM: 40 out of 40 subjects showed identifiable (CV < 52%) KxgI from the SDM, 20 out of 40 having identifiable SI from the MM. KxgI correlates well with the inverse of the HOMA-IR index, while SI correlates only when excluding five subjects with extreme SI values. With the exception of these five subjects, the SDM and MM derived indices correlate very well (r = 0.93). The SDM is theoretically sound and practically robust, and can routinely be considered for the determination of insulin sensitivity from the IVGTT. Free software for estimating the SDM parameters is available.

106 citations


Journal ArticleDOI
TL;DR: In this paper, a multiscale model for investigating expansion dynamics of non-small cell lung cancer (NSCLC) within a two-dimensional in silico microenvironment was developed.
Abstract: The epidermal growth factor receptor (EGFR) is frequently overexpressed in many cancers, including non-small cell lung cancer (NSCLC). In silico modeling is considered to be an increasingly promising tool to add useful insights into the dynamics of the EGFR signal transduction pathway. However, most of the previous modeling work focused on the molecular or the cellular level only, neglecting the crucial feedback between these scales as well as the interaction with the heterogeneous biochemical microenvironment. We developed a multiscale model for investigating expansion dynamics of NSCLC within a two-dimensional in silico microenvironment. At the molecular level, a specific EGFR-ERK intracellular signal transduction pathway was implemented. Dynamical alterations of these molecules were used to trigger phenotypic changes at the cellular level. Examining the relationship between extrinsic ligand concentrations, intrinsic molecular profiles and microscopic patterns, the results confirmed that increasing the amount of available growth factor leads to a spatially more aggressive cancer system. Moreover, for the cell closest to nutrient abundance, a phase-transition emerges where a minimal increase in extrinsic ligand abolishes the proliferative phenotype altogether. Our in silico results indicate that in NSCLC, in the presence of a strong extrinsic chemotactic stimulus (and depending on the cell's location) downstream EGFR-ERK signaling may be processed more efficiently, thereby yielding a migration-dominant cell phenotype and overall, an accelerated spatio-temporal expansion rate.

102 citations


Journal ArticleDOI
TL;DR: The predictive power of the constructed model for the key flux distributions, especially central carbon metabolism and glutamate-glutamine cycle fluxes, and its application to hypoxia is promising and strengthens the power of such stoichiometric models in the analysis of mammalian cell metabolism.
Abstract: It is a daunting task to identify all the metabolic pathways of brain energy metabolism and develop a dynamic simulation environment that will cover a time scale ranging from seconds to hours. To simplify this task and make it more practicable, we undertook stoichiometric modeling of brain energy metabolism with the major aim of including the main interacting pathways in and between astrocytes and neurons. The constructed model includes central metabolism (glycolysis, pentose phosphate pathway, TCA cycle), lipid metabolism, reactive oxygen species (ROS) detoxification, amino acid metabolism (synthesis and catabolism), the well-known glutamate-glutamine cycle, other coupling reactions between astrocytes and neurons, and neurotransmitter metabolism. This is, to our knowledge, the most comprehensive attempt at stoichiometric modeling of brain metabolism to date in terms of its coverage of a wide range of metabolic pathways. We then attempted to model the basal physiological behaviour and hypoxic behaviour of the brain cells where astrocytes and neurons are tightly coupled. The reconstructed stoichiometric reaction model included 217 reactions (184 internal, 33 exchange) and 216 metabolites (183 internal, 33 external) distributed in and between astrocytes and neurons. Flux balance analysis (FBA) techniques were applied to the reconstructed model to elucidate the underlying cellular principles of neuron-astrocyte coupling. Simulation of resting conditions under the constraints of maximization of glutamate/glutamine/GABA cycle fluxes between the two cell types with subsequent minimization of Euclidean norm of fluxes resulted in a flux distribution in accordance with literature-based findings. As a further validation of our model, the effect of oxygen deprivation (hypoxia) on fluxes was simulated using an FBA-derivative approach, known as minimization of metabolic adjustment (MOMA). The results show the power of the constructed model to simulate disease behaviour on the flux level, and its potential to analyze cellular metabolic behaviour in silico. The predictive power of the constructed model for the key flux distributions, especially central carbon metabolism and glutamate-glutamine cycle fluxes, and its application to hypoxia is promising. The resultant acceptable predictions strengthen the power of such stoichiometric models in the analysis of mammalian cell metabolism.

90 citations


Journal ArticleDOI
TL;DR: The present findings suggest that in order to offer robust assessments it is critically important to clarify in detail the natural history of a disease as well as heterogeneous patterns of transmission, given that human contact behavior probably influences transmissibility, individual countermeasures need to be explored to construct effective non-pharmaceutical interventions.
Abstract: Time variations in transmission potential have rarely been examined with regard to pandemic influenza. This paper reanalyzes the temporal distribution of pandemic influenza in Prussia, Germany, from 1918–19 using the daily numbers of deaths, which totaled 8911 from 29 September 1918 to 1 February 1919, and the distribution of the time delay from onset to death in order to estimate the effective reproduction number, Rt, defined as the actual average number of secondary cases per primary case at a given time. A discrete-time branching process was applied to back-calculated incidence data, assuming three different serial intervals (i.e. 1, 3 and 5 days). The estimated reproduction numbers exhibited a clear association between the estimates and choice of serial interval; i.e. the longer the assumed serial interval, the higher the reproduction number. Moreover, the estimated reproduction numbers did not decline monotonically with time, indicating that the patterns of secondary transmission varied with time. These tendencies are consistent with the differences in estimates of the reproduction number of pandemic influenza in recent studies; high estimates probably originate from a long serial interval and a model assumption about transmission rate that takes no account of time variation and is applied to the entire epidemic curve. The present findings suggest that in order to offer robust assessments it is critically important to clarify in detail the natural history of a disease (e.g. including the serial interval) as well as heterogeneous patterns of transmission. In addition, given that human contact behavior probably influences transmissibility, individual countermeasures (e.g. household quarantine and mask-wearing) need to be explored to construct effective non-pharmaceutical interventions.

80 citations


Journal ArticleDOI
TL;DR: The label-structured model and the elaborated computational approach establish a quantitative basis for more informative interpretation of the flow cytometry CFSE systems and allows one to work directly with the histograms of the CFSE fluorescence without the need to specify the marker ranges.
Abstract: The flow cytometry analysis of CFSE-labelled cells is currently one of the most informative experimental techniques for studying cell proliferation in immunology. The quantitative interpretation and understanding of such heterogenous cell population data requires the development of distributed parameter mathematical models and computational techniques for data assimilation. The mathematical modelling of label-structured cell population dynamics leads to a hyperbolic partial differential equation in one space variable. The model contains fundamental parameters of cell turnover and label dilution that need to be estimated from the flow cytometry data on the kinetics of the CFSE label distribution. To this end a maximum likelihood approach is used. The Lax-Wendroff method is used to solve the corresponding initial-boundary value problem for the model equation. By fitting two original experimental data sets with the model we show its biological consistency and potential for quantitative characterization of the cell division and death rates, treated as continuous functions of the CFSE expression level. Once the initial distribution of the proliferating cell population with respect to the CFSE intensity is given, the distributed parameter modelling allows one to work directly with the histograms of the CFSE fluorescence without the need to specify the marker ranges. The label-structured model and the elaborated computational approach establish a quantitative basis for more informative interpretation of the flow cytometry CFSE systems.

73 citations


Journal ArticleDOI
TL;DR: The greater weight loss on carbohydrate restricted diets, popularly referred to as metabolic advantage can thus be understood in terms of the principles of nonequilibrium thermodynamics and is a consequence of the dynamic nature of bioenergetics where it is important to consider kinetic as well as thermodynamic variables.
Abstract: Carbohydrate restriction as a strategy for control of obesity is based on two effects: a behavioral effect, spontaneous reduction in caloric intake and a metabolic effect, an apparent reduction in energy efficiency, greater weight loss per calorie consumed. Variable energy efficiency is established in many contexts (hormonal imbalance, weight regain and knock-out experiments in animal models), but in the area of the effect of macronutrient composition on weight loss, controversy remains. Resistance to the idea comes from a perception that variable weight loss on isocaloric diets would somehow violate the laws of thermodynamics, that is, only caloric intake is important ("a calorie is a calorie"). Previous explanations of how the phenomenon occurs, based on equilibrium thermodynamics, emphasized the inefficiencies introduced by substrate cycling and requirements for increased gluconeogenesis. Living systems, however, are maintained far from equilibrium, and metabolism is controlled by the regulation of the rates of enzymatic reactions. The principles of nonequilibrium thermodynamics which emphasize kinetic fluxes as well as thermodynamic forces should therefore also be considered. Here we review the principles of nonequilibrium thermodynamics and provide an approach to the problem of maintenance and change in body mass by recasting the problem of TAG accumulation and breakdown in the adipocyte in the language of nonequilibrium thermodynamics. We describe adipocyte physiology in terms of cycling between an efficient storage mode and a dissipative mode. Experimentally, this is measured in the rate of fatty acid flux and fatty acid oxidation. Hormonal levels controlled by changes in dietary carbohydrate regulate the relative contributions of the efficient and dissipative parts of the cycle. While no experiment exists that measures all relevant variables, the model is supported by evidence in the literature that 1) dietary carbohydrate, via its effect on hormone levels controls fatty acid flux and oxidation, 2) the rate of lipolysis is a primary target of insulin, postprandial, and 3) chronic carbohydrate-restricted diets reduce the levels of plasma TAG in response to a single meal. In summary, we propose that, in isocaloric diets of different macronutrient composition, there is variable flux of stored TAG controlled by the kinetic effects of insulin and other hormones. Because the fatty acid-TAG cycle never comes to equilibrium, net gain or loss is possible. The greater weight loss on carbohydrate restricted diets, popularly referred to as metabolic advantage can thus be understood in terms of the principles of nonequilibrium thermodynamics and is a consequence of the dynamic nature of bioenergetics where it is important to consider kinetic as well as thermodynamic variables.

66 citations


Journal ArticleDOI
TL;DR: Low-grade inflammation, related to prehepatic portal hypertension, switches to high- grade inflammation with the development of severe and life-threatening complications when associated with chronic liver disease.
Abstract: Portal hypertension is a clinical syndrome that manifests as ascites, portosystemic encephalopathy and variceal hemorrhage, and these alterations often lead to death. Splanchnic and/or systemic responses to portal hypertension could have pathophysiological mechanisms similar to those involved in the post-traumatic inflammatory response. The splanchnic and systemic impairments produced throughout the evolution of experimental prehepatic portal hypertension could be considered to have an inflammatory origin. In portal vein ligated rats, portal hypertensive enteropathy, hepatic steatosis and portal hypertensive encephalopathy show phenotypes during their development that can be considered inflammatory, such as: ischemia-reperfusion (vasodilatory response), infiltration by inflammatory cells (mast cells) and bacteria (intestinal translocation of endotoxins and bacteria) and lastly, angiogenesis. Similar inflammatory phenotypes, worsened by chronic liver disease (with anti-oxidant and anti-enzymatic ability reduction) characterize the evolution of portal hypertension and its complications (hepatorenal syndrome, ascites and esophageal variceal hemorrhage) in humans. Low-grade inflammation, related to prehepatic portal hypertension, switches to high-grade inflammation with the development of severe and life-threatening complications when associated with chronic liver disease.

65 citations


Journal ArticleDOI
TL;DR: This model proves to be robust to the stochasticity of protein binding/unbinding at experimentally determined rates and even at rates several orders of magnitude slower, and has shown in a mathematically rigorous way that the time-averaged deterministic system is indeed the fast-binding-rate limit of the full stoChastic model.
Abstract: Circadian rhythms with varying components exist in organisms ranging from humans to cyanobacteria. A simple evolutionarily plausible mechanism for the origin of such a variety of circadian oscillators, proposed in earlier work, involves the non-disruptive coupling of pre-existing ultradian transcriptional-translational oscillators (TTOs), producing "beats," in individual cells. However, like other TTO models of circadian rhythms, it is important to establish that the inherent stochasticity of the protein binding and unbinding does not invalidate the finding of clear oscillations with circadian period. The TTOs of our model are described in two versions: 1) a version in which the activation or inhibition of genes is regulated stochastically, where the 'unoccupied" (or "free") time of the site under consideration depends on the concentration of a protein complex produced by another site, and 2) a deterministic, "time-averaged" version in which the switching between the "free" and "occupied" states of the sites occurs so rapidly that the stochastic effects average out. The second case is proved to emerge from the first in a mathematically rigorous way. Numerical results for both scenarios are presented and compared. Our model proves to be robust to the stochasticity of protein binding/unbinding at experimentally determined rates and even at rates several orders of magnitude slower. We have not only confirmed this by numerical simulation, but have shown in a mathematically rigorous way that the time-averaged deterministic system is indeed the fast-binding-rate limit of the full stochastic model.

Journal ArticleDOI
TL;DR: This study represents the first attempt to dynamically simulate metabolic enzymatic drug-drug interactions via coupled WB-PBPK models and will provide a basis for the development of other inhibitor models that can be used to guide, interpret, and potentially replace clinical drug- drug interaction trials.
Abstract: Background Drug-drug interactions resulting from the inhibition of an enzymatic process can have serious implications for clinical drug therapy. Quantification of the drugs internal exposure increase upon administration with an inhibitor requires understanding to avoid the drug reaching toxic thresholds. In this study, we aim to predict the effect of the CYP3A4 inhibitors, itraconazole (ITZ) and its primary metabolite, hydroxyitraconazole (OH-ITZ) on the pharmacokinetics of the anesthetic, midazolam (MDZ) and its metabolites, 1' hydroxymidazolam (1OH-MDZ) and 1' hydroxymidazolam glucuronide (1OH-MDZ-Glu) using mechanistic whole body physiologically-based pharmacokinetic simulation models. The model is build on MDZ, 1OH-MDZ and 1OH-MDZ-Glu plasma concentration time data experimentally determined in 19 CYP3A5 genotyped adult male individuals, who received MDZ intravenously in a basal state. The model is then used to predict MDZ, 1OH-MDZ and 1OH-MDZ-Glu concentrations in an CYP3A-inhibited state following ITZ administration.

Journal ArticleDOI
TL;DR: It is demonstrated that nuclear structure can satisfy the predictions of the viscoelastic phase separation of the dynamically different nuclear components, in combination with macromolecular crowding and the properties of colloidal particles.
Abstract: The cell nucleus is highly compartmentalized with well-defined domains, it is not well understood how this nuclear order is maintained. Many scientists are fascinated by the different set of structures observed in the nucleus to attribute functions to them. In order to distinguish functional compartments from non-functional aggregates, I believe is important to investigate the biophysical nature of nuclear organisation. The various nuclear compartments can be divided broadly as chromatin or protein and/or RNA based, and they have very different dynamic properties. The chromatin compartment displays a slow, constrained diffusional motion. On the other hand, the protein/RNA compartment is very dynamic. Physical systems with dynamical asymmetry go to viscoelastic phase separation. This phase separation phenomenon leads to the formation of a long-lived interaction network of slow components (chromatin) scattered within domains rich in fast components (protein/RNA). Moreover, the nucleus is packed with macromolecules in the order of 300 mg/ml. This high concentration of macromolecules produces volume exclusion effects that enhance attractive interactions between macromolecules, known as macromolecular crowding, which favours the formation of compartments. In this paper I hypothesise that nuclear compartmentalization can be explained by viscoelastic phase separation of the dynamically different nuclear components, in combination with macromolecular crowding and the properties of colloidal particles. I demonstrate that nuclear structure can satisfy the predictions of this hypothesis. I discuss the functional implications of this phenomenon.

Journal ArticleDOI
TL;DR: The Sav1866 X-ray structure may serve as a suitable template for the ABCB1 model, as it did with ABCC5, and the EPS in the substrate translocation chambers and the positive-negative ratio of charged amino acids were in accordance with the transport of cationic amphiphilic and lipophilic substrates byABCB1, andThe transport of organic anions byABCC5.
Abstract: Multidrug resistance is a particular limitation to cancer chemotherapy, antibiotic treatment and HIV medication The ABC (ATP binding cassette) transporters human P-glycoprotein (ABCB1) and the human MRP5 (ABCC5) are involved in multidrug resistance In order to elucidate structural and molecular concepts of multidrug resistance, we have constructed a molecular model of the ATP-bound outward facing conformation of the human multidrug resistance protein ABCB1 using the Sav1866 crystal structure as a template, and compared the ABCB1 model with a previous ABCC5 model The electrostatic potential surface (EPS) of the ABCB1 substrate translocation chamber, which transports cationic amphiphilic and lipophilic substrates, was neutral with negative and weakly positive areas In contrast, EPS of the ABCC5 substrate translocation chamber, which transports organic anions, was generally positive Positive-negative ratios of amino acids in the TMDs of ABCB1 and ABCC5 were also analyzed, and the positive-negative ratio of charged amino acids was higher in the ABCC5 TMDs than in the ABCB1 TMDs In the ABCB1 model residues Leu65 (transmembrane helix 1 (TMH1)), Ile306 (TMH5), Ile340 (TMH6) and Phe343 (TMH6) may form a binding site, and this is in accordance with previous site directed mutagenesis studies The Sav1866 X-ray structure may serve as a suitable template for the ABCB1 model, as it did with ABCC5 The EPS in the substrate translocation chambers and the positive-negative ratio of charged amino acids were in accordance with the transport of cationic amphiphilic and lipophilic substrates by ABCB1, and the transport of organic anions by ABCC5

Journal ArticleDOI
TL;DR: It is shown here that the model format of a Generalized Mass Action (GMA) system may be optimized very efficiently with techniques of geometric programming, and the geometric programming method was found to be equal or better than the earlier methods in terms of successful identification of optima and efficiency.
Abstract: In the past, tasks of model based yield optimization in metabolic engineering were either approached with stoichiometric models or with structured nonlinear models such as S-systems or linear-logarithmic representations. These models stand out among most others, because they allow the optimization task to be converted into a linear program, for which efficient solution methods are widely available. For pathway models not in one of these formats, an Indirect Optimization Method (IOM) was developed where the original model is sequentially represented as an S-system model, optimized in this format with linear programming methods, reinterpreted in the initial model form, and further optimized as necessary. A new method is proposed for this task. We show here that the model format of a Generalized Mass Action (GMA) system may be optimized very efficiently with techniques of geometric programming. We briefly review the basics of GMA systems and of geometric programming, demonstrate how the latter may be applied to the former, and illustrate the combined method with a didactic problem and two examples based on models of real systems. The first is a relatively small yet representative model of the anaerobic fermentation pathway in S. cerevisiae, while the second describes the dynamics of the tryptophan operon in E. coli. Both models have previously been used for benchmarking purposes, thus facilitating comparisons with the proposed new method. In these comparisons, the geometric programming method was found to be equal or better than the earlier methods in terms of successful identification of optima and efficiency. GMA systems are of importance, because they contain stoichiometric, mass action and S-systems as special cases, along with many other models. Furthermore, it was previously shown that algebraic equivalence transformations of variables are sufficient to convert virtually any types of dynamical models into the GMA form. Thus, efficient methods for optimizing GMA systems have multifold appeal.

Journal ArticleDOI
TL;DR: The model suggests that lapatinib acts as expected by slowing the transition through G1 phase, however, the experimental data indicated a previously unreported late cytotoxic effect, which was incorporated into the model.
Abstract: Oncogene signaling is known to deregulate cell proliferation resulting in uncontrolled growth and cellular transformation. Gene amplification and/or somatic mutations of the HER2/Neu (ErbB2) proto-oncogene occur in approximately 20% of breast cancers. A therapeutic strategy that has been used to block HER2 function is the small molecule tyrosine kinase inhibitor lapatinib. Using human mammary epithelial cells that overexpress HER2, we determined the anti-proliferative effect of lapatinib through measuring the total cell number and analyzing the cell cycle distribution. A mathematical model was used to interpret the experimental data. The model suggests that lapatinib acts as expected by slowing the transition through G1 phase. However, the experimental data indicated a previously unreported late cytotoxic effect, which was incorporated into the model. Both effects depend on the dosage of the drug, which shows saturation kinetics. The model separates quantitatively the cytostatic and cytotoxic effects of lapatinib and may have implications for preclinical studies with other anti-oncogene therapies.

Journal ArticleDOI
TL;DR: A novel cloning method for the design and production of specific, high-affinity-reacting proteins (SHARP) is presented, based on the concept of proteomic codes, which is suitable for large-scale, industrial production of specifically interacting peptides.
Abstract: The Proteomic Code is a set of rules by which information in genetic material is transferred into the physico-chemical properties of amino acids. It determines how individual amino acids interact with each other during folding and in specific protein-protein interactions. The Proteomic Code is part of the redundant Genetic Code. The 25-year-old history of this concept is reviewed from the first independent suggestions by Biro and Mekler, through the works of Blalock, Root-Bernstein, Siemion, Miller and others, followed by the discovery of a Common Periodic Table of Codons and Nucleic Acids in 2003 and culminating in the recent conceptualization of partial complementary coding of interacting amino acids as well as the theory of the nucleic acid-assisted protein folding. A novel cloning method for the design and production of specific, high-affinity-reacting proteins (SHARP) is presented. This method is based on the concept of proteomic codes and is suitable for large-scale, industrial production of specifically interacting peptides.

Journal ArticleDOI
TL;DR: The results indicate that yeast coordinates sphingolipid mediated changes during the diauxic shift through an array of small changes in many genes and enzymes, rather than relying on a strategy involving a few select genes with high sensitivity.
Abstract: Background The diauxic shift in yeast requires cells to coordinate a complicated response that involves numerous genes and metabolic processes. It is unknown whether responses of this type are mediated in vivo through changes in a few "key" genes and enzymes, which are mathematically characterized by high sensitivities, or whether they are based on many small changes in genes and enzymes that are not particularly sensitive. In contrast to global assessments of changes in gene or protein interaction networks, we study here control aspects of the diauxic shift by performing a detailed analysis of one specific pathway–sphingolipid metabolism–which is known to have signaling functions and is associated with a wide variety of stress responses.

Journal ArticleDOI
TL;DR: A computational approach was taken to understand how lateral inhibition, differential adhesion and programmed cell death can interact to create a mosaic pattern of biologically realistic primary and secondary cells, such as that formed by sensory and supporting cells of the developing chick inner ear epithelium.
Abstract: A significant body of literature is devoted to modeling developmental mechanisms that create patterns within groups of initially equivalent embryonic cells. Although it is clear that these mechanisms do not function in isolation, the timing of and interactions between these mechanisms during embryogenesis is not well known. In this work, a computational approach was taken to understand how lateral inhibition, differential adhesion and programmed cell death can interact to create a mosaic pattern of biologically realistic primary and secondary cells, such as that formed by sensory (primary) and supporting (secondary) cells of the developing chick inner ear epithelium. Four different models that interlaced cellular patterning mechanisms in a variety of ways were examined and their output compared to the mosaic of sensory and supporting cells that develops in the chick inner ear sensory epithelium. The results show that: 1) no single patterning mechanism can create a 2-dimensional mosaic pattern of the regularity seen in the chick inner ear; 2) cell death was essential to generate the most regular mosaics, even through extensive cell death has not been reported for the developing basilar papilla; 3) a model that includes an iterative loop of lateral inhibition, programmed cell death and cell rearrangements driven by differential adhesion created mosaics of primary and secondary cells that are more regular than the basilar papilla; 4) this same model was much more robust to changes in homo- and heterotypic cell-cell adhesive differences than models that considered either fewer patterning mechanisms or single rather than iterative use of each mechanism. Patterning the embryo requires collaboration between multiple mechanisms that operate iteratively. Interlacing these mechanisms into feedback loops not only refines the output patterns, but also increases the robustness of patterning to varying initial cell states.

Journal ArticleDOI
TL;DR: The proposed hypertabastic model shows to be a flexible and promising alternative to practitioners in this field and demonstrates an accelerated failure time version of the model by applying it to data from a randomized study of glioma patients who underwent radiotherapy treatment with and without radiosensitizer misonidazole.
Abstract: A new two-parameter probability distribution called hypertabastic is introduced to model the survival or time-to-event data. A simulation study was carried out to evaluate the performance of the hypertabastic distribution in comparison with popular distributions. We then demonstrate the application of the hypertabastic survival model by applying it to data from two motivating studies. The first one demonstrates the proportional hazards version of the model by applying it to a data set from multiple myeloma study. The second one demonstrates an accelerated failure time version of the model by applying it to data from a randomized study of glioma patients who underwent radiotherapy treatment with and without radiosensitizer misonidazole. Based on the results from the simulation study and two applications, the proposed model shows to be a flexible and promising alternative to practitioners in this field.

Journal ArticleDOI
TL;DR: This compartmental formulation parsimoniously demonstrates a correlation between immune responsiveness, network connectivity, and the natural history of infection in a population, and suggests that an increased disparity between people's ability to respond to an infection, while maintaining an average immune responsiveness rate, may worsen the overall impact of an outbreak within a population.
Abstract: The desire to better understand the immuno-biology of infectious diseases as a broader ecological system has motivated the explicit representation of epidemiological processes as a function of immune system dynamics. While several recent and innovative contributions have explored unified models across cellular and organismal domains, and appear well-suited to describing particular aspects of intracellular pathogen infections, these existing immuno-epidemiological models lack representation of certain cellular components and immunological processes needed to adequately characterize the dynamics of some important epidemiological contexts. Here, we complement existing models by presenting an alternate framework of anti-viral immune responses within individual hosts and infection spread across a simple network-based population. Our compartmental formulation parsimoniously demonstrates a correlation between immune responsiveness, network connectivity, and the natural history of infection in a population. It suggests that an increased disparity between people's ability to respond to an infection, while maintaining an average immune responsiveness rate, may worsen the overall impact of an outbreak within a population. Additionally, varying an individual's network connectivity affects the rate with which the population-wide viral load accumulates, but has little impact on the asymptotic limit in which it approaches. Whilst the clearance of a pathogen in a population will lower viral loads in the short-term, the longer the time until re-infection, the more severe an outbreak is likely to be. Given the eventual likelihood of reinfection, the resulting long-run viral burden after elimination of an infection is negligible compared to the situation in which infection is persistent. Future infectious disease research would benefit by striving to not only continue to understand the properties of an invading microbe, or the body's response to infections, but how these properties, jointly, affect the propagation of an infection throughout a population. These initial results offer a refinement to current immuno-epidemiological modelling methodology, and reinforce how coupling principles of immunology with epidemiology can provide insight into a multi-scaled description of an ecological system. Overall, we anticipate these results to as a further step towards articulating an integrated, more refined epidemiological theory of the reciprocal influences between host-pathogen interactions, epidemiological mixing, and disease spread.

Journal ArticleDOI
TL;DR: A probable significant cause of variance in suspended microspheres assay results is variation in microsphere diameter, which can potentially be addressed by changes in the manufacturing process.
Abstract: Background Luminex suspension microarray assays are in widespread use. There are issues of variability of assay readings using this technology.

Journal ArticleDOI
TL;DR: Deuteronation, as exemplified by ATP synthase and the ETC, may interfere with the conformations and functions of many macromolecules and contribute to some pathologies like heavy water toxicity and aging.
Abstract: Background In nature, deuterium/hydrogen ratio is ~1/6600, therefore one of ~3300 water (H2O) molecules is deuterated (HOD + D2O). In body fluids the ratio of deuterons to protons is ~1/15000 because of the lower ionization constant of heavy water. The probability of deuteronation rather than protonation of Asp 61 on the subunit c of F0 part of ATP synthase is also ~1/15000. The contribution of deuteronation to the pKa of Asp 61 is 0.35.

Journal ArticleDOI
TL;DR: By investigating the underlying reaction kinetics, it is shown that in some ranges of kinetic parameters one can explicitly link the time dependent indicator signal to the time-course of the calcium influx, and thus, to the unperturbed calcium level had there been no indicator in the cell.
Abstract: Optical indicators of cytosolic calcium levels have become important experimental tools in systems and cellular neuroscience Indicators are known to interfere with intracellular calcium levels by acting as additional buffers, and this may strongly alter the time-course of various dynamical variables to be measured By investigating the underlying reaction kinetics, we show that in some ranges of kinetic parameters one can explicitly link the time dependent indicator signal to the time-course of the calcium influx, and thus, to the unperturbed calcium level had there been no indicator in the cell

Journal ArticleDOI
TL;DR: For future extensions, measures of functional bioinformatics may provide a means to evaluate potential evolving pathways from effects such as mutations, as well as analyzing the internal structural and functional relationships within the 3-D structure of proteins.
Abstract: Abel and Trevors have delineated three aspects of sequence complexity, Random Sequence Complexity (RSC), Ordered Sequence Complexity (OSC) and Functional Sequence Complexity (FSC) observed in biosequences such as proteins. In this paper, we provide a method to measure functional sequence complexity. We have extended Shannon uncertainty by incorporating the data variable with a functionality variable. The resulting measured unit, which we call Functional bit (Fit), is calculated from the sequence data jointly with the defined functionality variable. To demonstrate the relevance to functional bioinformatics, a method to measure functional sequence complexity was developed and applied to 35 protein families. Considerations were made in determining how the measure can be used to correlate functionality when relating to the whole molecule and sub-molecule. In the experiment, we show that when the proposed measure is applied to the aligned protein sequences of ubiquitin, 6 of the 7 highest value sites correlate with the binding domain. For future extensions, measures of functional bioinformatics may provide a means to evaluate potential evolving pathways from effects such as mutations, as well as analyzing the internal structural and functional relationships within the 3-D structure of proteins.

Journal ArticleDOI
TL;DR: It is found that chemotactic cells generally avoid absorbing barriers much more easily than non-absorbing ones, and the efficiency of obstacle avoidance depends strongly on whether theChemotactic chemical reacts or remains unabsorbed at the obstacle surface.
Abstract: Chemotactic movement is a common feature of many cells and microscopic organisms. In vivo, chemotactic cells have to follow a chemotactic gradient and simultaneously avoid the numerous obstacles present in their migratory path towards the chemotactic source. It is not clear how cells detect and avoid obstacles, in particular whether they need a specialized biological mechanism to do so. We propose that cells can sense the presence of obstacles and avoid them because obstacles interfere with the chemical field. We build a model to test this hypothesis and find that this naturally enables efficient at-a-distance sensing to be achieved with no need for a specific and active obstacle-sensing mechanism. We find that (i) the efficiency of obstacle avoidance depends strongly on whether the chemotactic chemical reacts or remains unabsorbed at the obstacle surface. In particular, it is found that chemotactic cells generally avoid absorbing barriers much more easily than non-absorbing ones. (ii) The typically low noise in a cell's motion hinders the ability to avoid obstacles. We also derive an expression estimating the typical distance traveled by chemotactic cells in a 3D random distribution of obstacles before capture; this is a measure of the distance over which chemotaxis is viable as a means of directing cells from one point to another in vivo. Chemotactic cells, in many cases, can avoid obstacles by simply following the spatially perturbed chemical gradients around obstacles. It is thus unlikely that they have developed specialized mechanisms to cope with environments having low to moderate concentrations of obstacles.

Journal ArticleDOI
TL;DR: In this article, the authors present an analogy between two unrelated instabilities: one is caused by the impact of a drop of water on a solid surface while the other concerns a tumor that develops invasive cellular branches into the surrounding host tissue.
Abstract: Tissue invasion, one of the hallmarks of cancer, is a major clinical problem. Recent studies suggest that the process of invasion is driven at least in part by a set of physical forces that may be susceptible to mathematical modelling which could have practical clinical value. We present an analogy between two unrelated instabilities. One is caused by the impact of a drop of water on a solid surface while the other concerns a tumor that develops invasive cellular branches into the surrounding host tissue. In spite of the apparent abstractness of the idea, it yields a very practical result, i.e. an index that predicts tumor invasion based on a few measurable parameters. We discuss its application in the context of experimental data and suggest potential clinical implications.

Journal ArticleDOI
TL;DR: The model explains the measured effective diffusion coefficient for ions in skeletal muscle t-tubules and finds that smaller skeletal muscle fibres are more resistant to membrane depolarization.
Abstract: Background: Skeletal muscle fibres contain transverse tubular (t-tubule) networks that allow electrical signals to rapidly propagate into the fibre. These electrical signals are generated by the transport of ions across the t-tubule membranes and this can result in significant changes in ion concentrations within the t-tubules during muscle excitation. During periods of repeated highfrequency activation of skeletal muscle the t-tubule K+ concentration is believed to increase significantly and diffusive K+ transport from the t-tubules into the interstitial space provides a mechanism for alleviating muscle membrane depolarization. However, the tortuous nature of the highly branched space-filling t-tubule network impedes the diffusion of material through the network. The effective diffusion coefficient for ions in the t-tubules has been measured to be approximately five times lower than in free solution, which is significantly different from existing theoretical values of the effective diffusion coefficient that range from 2–3 times lower than in free solution. To resolve this discrepancy, in this paper we study the process of diffusion within electron microscope scanned sections of the skeletal muscle t-tubule network using mathematical modelling and computer simulation techniques. Our model includes t-tubule geometry, tautness, hydrodynamic and non-planar network factors. Results: Using our model we found that the t-tubule network geometry reduced the K + diffusion coefficient to 19–27% of its value in free solution, which is consistent with the experimentally observed value of 21% and is significantly smaller than existing theoretical values that range from 32–50%. We also found that diffusion in the t-tubules is anomalous for skeletal muscle fibres with a diameter of less than approximately 10–20 μm as a result of obstructed diffusion. We also observed that the [K+] within the interior of the t-tubule network during high-frequency activation is greater for fibres with a larger diameter. Smaller skeletal muscle fibres are therefore more resistant to membrane depolarization. Because the t-tubule network is anisotropic and inhomogeneous, we also found that the [K + ] distribution generated within the network was irregular for fibres of small diameter. Conclusion: Our model explains the measured effective diffusion coefficient for ions in skeletal muscle t-tubules.

Journal ArticleDOI
TL;DR: Under certain conditions, host mortality may enhance transmission of WNV and similarly maintained arboviruses and thus facilitate their emergence and spread.
Abstract: Since its 1999 emergence in New York City, West Nile virus (WNV) has become the most important and widespread cause of mosquito-transmitted disease in North America. Its sweeping spread from the Atlantic to the Pacific coast was accompanied by widespread mortality among wild birds, especially corvids. Only sporadic avian mortality had previously been associated with this infection in the Old World. Here, we examine the possibility that reservoir host mortality may intensify transmission, both by concentrating vector mosquitoes on remaining hosts and by preventing the accumulation of "herd immunity". Inspection of the Ross-Macdonald expression of the basic reproductive number (R0) suggests that this quantity may increase with reservoir host mortality. Computer simulation confirms this finding and indicates that the level of virulence is positively associated with the numbers of infectious mosquitoes by the end of the epizootic. The presence of reservoir incompetent hosts in even moderate numbers largely eliminated the transmission-enhancing effect of host mortality. Local host die-off may prevent mosquitoes to "waste" infectious blood meals on immune host and may thus facilitate perpetuation and spread of transmission. Under certain conditions, host mortality may enhance transmission of WNV and similarly maintained arboviruses and thus facilitate their emergence and spread. The validity of the assumptions upon which this argument is built need to be empirically examined.

Journal ArticleDOI
TL;DR: The ocular lens is considered in the context of contemporary developments in biological ideas, and the lens stem cell hypothesis is proposed, which hypothesizes that lens stem cells reside outside the lens capsule, in the nearby ciliary body.
Abstract: In this paper, we consider the ocular lens in the context of contemporary developments in biological ideas. We attempt to reconcile lens biology with stem cell concepts and a dearth of lens tumors. Historically, the lens has been viewed as a closed system, in which cells at the periphery of the lens epithelium differentiate into fiber cells. Theoretical considerations led us to question whether the intracapsular lens is indeed self-contained. Since stem cells generate tumors and the lens does not naturally develop tumors, we reasoned that lens stem cells may not be present within the capsule. We hypothesize that lens stem cells reside outside the lens capsule, in the nearby ciliary body. Our ideas challenge the existing lens biology paradigm. We begin our discussion with lens background information, in order to describe our lens stem cell hypothesis in the context of published data. Then we present the ciliary body as a possible source for lens stem cells, and conclude by comparing the ocular lens with the corneal epithelium.