scispace - formally typeset
Search or ask a question

Showing papers in "Tissue Engineering Part A in 2020"


Journal ArticleDOI
TL;DR: Three Dimensional printing can be used to generate multilayered vascularized human skin grafts that can potentially overcome the limitations of graft survival observed in current avascular skin substitutes.
Abstract: Multilayered skin substitutes comprising allogeneic cells have been tested for the treatment of nonhealing cutaneous ulcers. However, such nonnative skin grafts fail to permanently engraft because they lack dermal vascular networks important for integration with the host tissue. In this study, we describe the fabrication of an implantable multilayered vascularized bioengineered skin graft using 3D bioprinting. The graft is formed using one bioink containing human foreskin dermal fibroblasts (FBs), human endothelial cells (ECs) derived from cord blood human endothelial colony-forming cells (HECFCs), and human placental pericytes (PCs) suspended in rat tail type I collagen to form a dermis followed by printing with a second bioink containing human foreskin keratinocytes (KCs) to form an epidermis. In vitro, KCs replicate and mature to form a multilayered barrier, while the ECs and PCs self-assemble into interconnected microvascular networks. The PCs in the dermal bioink associate with EC-lined vascular structures and appear to improve KC maturation. When these 3D printed grafts are implanted on the dorsum of immunodeficient mice, the human EC-lined structures inosculate with mouse microvessels arising from the wound bed and become perfused within 4 weeks after implantation. The presence of PCs in the printed dermis enhances the invasion of the graft by host microvessels and the formation of an epidermal rete. Impact Statement Three Dimensional printing can be used to generate multilayered vascularized human skin grafts that can potentially overcome the limitations of graft survival observed in current avascular skin substitutes. Inclusion of human pericytes in the dermal bioink appears to improve both dermal and epidermal maturation.

140 citations


Journal ArticleDOI
TL;DR: This review critically evaluate bioink design criteria, specifically for extrusion-based bioprinting techniques, to fabricate complex constructs to improve communication between cells and the extracellular matrix.
Abstract: 3D bioprinting is an additive manufacturing technique that recapitulates the native architecture of tissues. This is accomplished through the precise deposition of cell-containing bioinks. The spatiotemporal control over bioink deposition permits for improved communication between cells and the extracellular matrix, facilitates fabrication of anatomically and physiologically relevant structures. The physiochemical properties of bioinks, before and after crosslinking, are crucial for bioprinting complex tissue structures. Specifically, the rheological properties of bioinks determines printability, structural fidelity, and cell viability during the printing process, whereas postcrosslinking of bioinks are critical for their mechanical integrity, physiological stability, cell survival, and cell functions. In this review, we critically evaluate bioink design criteria, specifically for extrusion-based 3D bioprinting techniques, to fabricate complex constructs. The effects of various processing parameters on the biophysical and biochemical characteristics of bioinks are discussed. Furthermore, emerging trends and future directions in the area of bioinks and bioprinting are also highlighted. Graphical abstract [Figure: see text] Impact statement Extrusion-based 3D bioprinting is an emerging additive manufacturing approach for fabricating cell-laden tissue engineered constructs. This review critically evaluates bioink design criteria to fabricate complex tissue constructs. Specifically, pre- and post-printing evaluation approaches are described, as well as new research directions in the field of bioink development and functional bioprinting are highlighted.

97 citations


Journal ArticleDOI
TL;DR: The utility of bioprinted skin for epidermal barrier formation and normal collagen remodeling in full-thickness wounds is demonstrated and the presence of human cells in the regenerated dermis, the formation of a stratified epidermis, dermal maturation, and blood vessel formation in biopprinted skin is demonstrated.
Abstract: Over 1 million burn injuries are treated annually in the United States, and current tissue engineered skin fails to meet the need for full-thickness replacement. Bioprinting technology has allowed fabrication of full-thickness skin and has demonstrated the ability to close full-thickness wounds. However, analysis of collagen remodeling in wounds treated with bioprinted skin has not been reported. The purpose of this study is to demonstrate the utility of bioprinted skin for epidermal barrier formation and normal collagen remodeling in full-thickness wounds. Human keratinocytes, melanocytes, fibroblasts, dermal microvascular endothelial cells, follicle dermal papilla cells, and adipocytes were suspended in fibrinogen bioink and bioprinted to form a tri-layer skin structure. Bioprinted skin was implanted onto 2.5 × 2.5 cm full-thickness excisional wounds on athymic mice, compared with wounds treated with hydrogel only or untreated wounds. Total wound closure, epithelialization, and contraction were quantified, and skin samples were harvested at 21 days for histology. Picrosirius red staining was used to quantify collagen fiber orientation, length, and width. Immunohistochemical (IHC) staining was performed to confirm epidermal barrier formation, dermal maturation, vascularity, and human cell integration. All bioprinted skin treated wounds closed by day 21, compared with open control wounds. Wound closure in bioprinted skin treated wounds was primarily due to epithelialization. In contrast, control hydrogel and untreated groups had sparse wound coverage and incomplete closure driven primarily by contraction. Picrosirius red staining confirmed a normal basket weave collagen organization in bioprinted skin-treated wounds compared with parallel collagen fibers in hydrogel only and untreated wounds. IHC staining at day 21 demonstrated the presence of human cells in the regenerated dermis, the formation of a stratified epidermis, dermal maturation, and blood vessel formation in bioprinted skin, none of which was present in control hydrogel treated wounds. Bioprinted skin accelerated full-thickness wound closure by promoting epidermal barrier formation, without increasing contraction. This healing process is associated with human cells from the bioprinted skin laying down a healthy, basket-weave collagen network. The remodeled skin is phenotypically similar to human skin and composed of a composite of graft and infiltrating host cells. Impact statement We have demonstrated the ability of bioprinted skin to enhance closure of full-thickness wounds through epithelialization and normal collagen remodeling. To our knowledge, this article is the first to quantify collagen remodeling by bioprinted skin in full-thickness wounds. Our methods and results can be used to guide further investigation of collagen remodeling by tissue engineered skin products to improve ongoing and future bioprinting skin studies. Ultimately, our skin bioprinting technology could translate into a new treatment for full-thickness wounds in human patients with the ability to recapitulate normal collagen remodeling in full-thickness wounds.

74 citations


Journal ArticleDOI
TL;DR: This work introduces the basics of virology and epidemiology for tissue engineers, and highlights important developments in the field of tissue engineering relevant to the current pandemic, including in vitro model systems, vaccine technology, and small-molecule drug delivery.
Abstract: In light of the current novel coronavirus (COVID-19) pandemic, as well as other viral outbreaks in the 21st century, there is a dire need for new diagnostic and therapeutic strategies to combat infectious diseases worldwide. As a convergence science, tissue engineering has traditionally focused on the application of engineering principles to biological systems, collaboration across disciplines, and rapid translation of technologies from the benchtop to the bedside. Given these strengths, tissue engineers are particularly well suited to apply their skill set to the current crisis and viral outbreaks in general. This work introduces the basics of virology and epidemiology for tissue engineers, and highlights important developments in the field of tissue engineering relevant to the current pandemic, including in vitro model systems, vaccine technology, and small-molecule drug delivery. COVID-19 serves as a call to arms for scientists across all disciplines, and tissue engineers are well trained to be leaders and contributors in this time of need. Impact statement Given the steep mortality caused by the recent novel coronavirus (COVID-19) pandemic, there is clear need for advances in diagnostics and therapeutics for viral outbreaks. Tissue engineering has the potential for critical impact on clinical outcomes in viral outbreaks. Tissue engineers, if mobilized, could play key roles as leaders in the outbreak, given their ability to apply engineering principles to biological processes, experience in collaborative environments, and penchant for technological translation from benchtop to bedside. In this work, three areas pioneered by tissue engineers that could be applied to the current COVID-19 crisis and future viral outbreaks are highlighted.

41 citations


Journal ArticleDOI
TL;DR: The results show that small defects generated during the printing process have a significant role in lowering the mechanical properties of 3D printed polymeric scaffolds and the in vitro osteoinductivity of the fabricated scaffolds is demonstrated.
Abstract: Bone defects are common and, in many cases, challenging to treat. Tissue engineering is an interdisciplinary approach with promising potential for treating bone defects. Within tissue engineering, ...

39 citations


Journal ArticleDOI
TL;DR: This is the first study that introduces a human-only cell line-based in vitro test system composed of a coculture of β-cells and ECs with a successful stimulation ofβ-cell secretory function monitored by a glucose-stimulated insulin secretion assays.
Abstract: β-Cell functionality and survival are highly dependent on the cells' microenvironment and cell-cell interactions. Since the pancreas is a highly vascularized organ, the crosstalk between β-cells and endothelial cells (ECs) is vital to ensure proper function. To understand the interaction of pancreatic β-cells with vascular ECs, we sought to investigate the impact of the spatial distribution on the interaction of human cell line-based β-cells (EndoC-βH3) and human umbilical vein endothelial cells (HUVECs). We focused on the evaluation of three major spatial distributions, which can be found within human islets in vivo, in tissue-engineered heterotypic cell spheroids, so-called pseudo-islets, by controlling the aggregation process using magnetic levitation. We report that heterotypic spheroids formed by spontaneous aggregation cannot be maintained in culture due to HUVEC disassembly over time. In contrast, magnetic levitation allows the formation of stable heterotypic spheroids with defined spatial distribution and significantly facilitated HUVEC integration. To the best of our knowledge, this is the first study that introduces a human-only cell line-based in vitro test system composed of a coculture of β-cells and ECs with a successful stimulation of β-cell secretory function monitored by a glucose-stimulated insulin secretion assays. In addition, we systematically investigate the impact of the spatial distribution on cocultures of human β-cells and ECs, showing that the architecture of pseudo-islets significantly affects β-cell functionality. Impact statement Tissue engineering of coculture systems containing β-cells and endothelial cells (ECs) is a promising technique to stimulate β-cell functionality. In this study, we analyzed human pancreatic islet tissue and revealed three different native distributions of β-cells and ECs. We successfully recreated these distributions in vitro by employing magnetic levitation of human β-cells and ECs, forming controlled heterotypic pseudo-islets, which enabled us to identify a significant impact of the pseudo-islet architecture on insulin secretion.

39 citations


Journal ArticleDOI
TL;DR: Two ML-based approaches are investigated: a direct classification-based approach that trains a classifier to distinguish between "low" and "high" quality prints and an indirect approach that uses a regression ML model that approximates the values of a printing quality metric.
Abstract: Various material compositions have been successfully used in 3D printing with promising applications as scaffolds in tissue engineering. However, identifying suitable printing conditions for new materials requires extensive experimentation in a time and resource-demanding process. This study investigates the use of Machine Learning (ML) for distinguishing between printing configurations that are likely to result in low-quality prints and printing configurations that are more promising as a first step toward the development of a recommendation system for identifying suitable printing conditions. The ML-based framework takes as input the printing conditions regarding the material composition and the printing parameters and predicts the quality of the resulting print as either "low" or "high." We investigate two ML-based approaches: a direct classification-based approach that trains a classifier to distinguish between low- and high-quality prints and an indirect approach that uses a regression ML model that approximates the values of a printing quality metric. Both modes are built upon Random Forests. We trained and evaluated the models on a dataset that was generated in a previous study, which investigated fabrication of porous polymer scaffolds by means of extrusion-based 3D printing with a full-factorial design. Our results show that both models were able to correctly label the majority of the tested configurations while a simpler linear ML model was not effective. Additionally, our analysis showed that a full factorial design for data collection can lead to redundancies in the data, in the context of ML, and we propose a more efficient data collection strategy.

36 citations


Journal ArticleDOI
TL;DR: 3D-printed SF-PRP scaffolds could be potential candidates for cartilage tissue engineering, according to the histological and the immunohistochemical findings.
Abstract: The recent advent of 3D bioprinting of biopolymers provides a novel method for fabrication of tissue-engineered scaffolds and also offers a potentially promising avenue in cartilage regeneration. Silk fibroin (SF) is one of the most popular biopolymers used for 3D bioprinting, but further application of SF is hindered by its limited biological activities. Incorporation of growth factors (GFs) has been identified as a solution to improve biological function. Platelet-rich plasma (PRP) is an autologous resource of GFs, which has been widely used in clinic. In this study, we have developed SF-based bioinks incorporated with different concentrations of PRP (12.5%, 25%, and 50%; vol/vol). Release kinetic studies show that SF-PRP bioinks could achieve controlled release of GFs. Subsequently, SF-PRP bioinks were successfully fabricated into scaffolds by bioprinting. Our results revealed that SF-PRP scaffolds possessed proper internal pore structure, good biomechanical properties, and a suitable degradation rate for cartilage regeneration. Live/dead staining showed that 3D, printed SF-PRP scaffolds were biocompatible. Moreover, in vitro studies revealed that tissue-engineered cartilage from the SF-PRP group exhibited improved qualities compared with the pure SF controls, according to histological and immunohistochemical findings. Biochemical evaluations confirmed that SF-PRP (50% PRP, v/v) scaffolds allowed the largest increases in collagen and glycosaminoglycan concentrations, when compared with the pure SF group. These findings suggest that 3D, printed SF-PRP scaffolds could be potential candidates for cartilage tissue engineering. Impact statement Three-dimensional bioprinting of silk fibroin (SF) hydrogel as bioinks is a promising strategy for cartilage tissue engineering, but it lacks biological activities, which favors proliferation of seeded cells and secretion of the extracellular matrix. In this study, we have successfully added platelet-rich plasma (PRP) into SF-based bioinks as an autologous source of growth factors. The 3D, printed SF-PRP scaffold showed an enhanced biological property, thus aiding in potential future development of novel cartilage tissue engineering applications.

33 citations


Journal ArticleDOI
TL;DR: The results showed that both organoid and organ-on-a-chip had experienced rapid growth in their academic and social impacts and influenced a wide spectrum of disciplines, but with a major distinct focus on CELL BIOLOGY, and NANOSCIENCE NANOTECHNOLOGY, respectively.
Abstract: Organoid and organ-on-a-chip have evolved as two critical but distinct approaches to develop human physiologically and pathologically relevant in vitro models. Although rapid progress has been witnessed in the past decade, there is no systematic comparison of their status and trends based on the scientometric analysis. In this study, we performed a comparative study of organoid and organ-on-a-chip using bibliometric methods. A total of 2790 documents published between 2009 and 2018 were retrieved and analyzed. Our results showed that both organoid and organ-on-a-chip had experienced rapid growth in their academic and social impacts and influenced a wide spectrum of disciplines, but with a major distinct focus on Cell Biology and Nanoscience Nanotechnology, respectively. The hotspots of organoid research were expanding from in vitro differentiation of Lgr5 stem cells to mechanistic studies of diseases, while the hotspots of the organ-on-a-chip research were transiting from the establishment of microfluidic devices for in vitro cell culture to stem cell differentiation and tissue engineering. Interestingly, there was a growing trend of combining organoid with organ-on-a-chip in the last few years. This comparative study presented a unique perspective to understand the evolutive history and future trends of organoid and organ-on-a-chip for emerging human relevant in vitro organotypic models. Impact statement Organoid and organ-on-a-chip, which served as emerging human physiologically and pathologically relevant in vitro models, hold a great promise to revolutionize the conventional paradigm in basic and clinical research. The fields of organoid and organ-on-a-chip have advanced rapidly over the past decade while lacking comparative studies based on bibliometric methods. This article provided the first scientometric study of these two fields from the unique perspectives of their research hotspots, influencing scientific areas, and global trends. Our bibliometric work will provide a quantitative and timely summary of these two fields for the researchers in the tissue engineering field.

32 citations


Journal ArticleDOI
TL;DR: The data obtained suggested that the composite scaffolds showed potential for tunable mechanical properties, in the range of alveolar walls and fibers, and showed good piezoelectricity, which is a feature found in elastic and collagen fibers, the main extracellular matrix molecules in lungs.
Abstract: Due to the morbidity and lethality of pulmonary diseases, new biomaterials and scaffolds are needed to support the regeneration of lung tissues, while ideally providing protective effects against i...

31 citations


Journal ArticleDOI
TL;DR: This 3D-printable composite scaffold exploits the advantages of additive manufacturing and the combined properties of HA and DBM to promote de novo bone formation and stabilize the spine in a rat model and may have the potential to overcome the limitations of currently-used bone graft substitutes for spinal fusion.
Abstract: Although numerous spinal biologics are commercially available, a cost-effective and safe bone graft substitute material for spine fusion has yet to be proven. In this study, "3D-Paints" containing varying volumetric ratios of hydroxyapatite (HA) and human demineralized bone matrix (DBM) in a poly(lactide-co-glycolide) elastomer were three-dimensional (3D) printed into scaffolds to promote osteointegration in rats, with an end goal of spine fusion without the need for recombinant growth factor. Spine fusion was evaluated by manual palpation, and osteointegration and de novo bone formation within scaffold struts were evaluated by laboratory and synchrotron microcomputed tomography and histology. The 3:1 HA:DBM composite achieved the highest mean fusion score and fusion rate (92%), which was significantly greater than the 3D printed DBM-only scaffold (42%). New bone was identified extending from the host transverse processes into the scaffold macropores, and osteointegration scores correlated with successful fusion. Strikingly, the combination of HA and DBM resulted in the growth of bone-like spicules within the DBM particles inside scaffold struts. These spicules were not observed in DBM-only scaffolds, suggesting that de novo spicule formation requires both HA and DBM. Collectively, our work suggests that this recombinant growth factor-free composite shows promise to overcome the limitations of currently used bone graft substitutes for spine fusion. Impact Statement Currently, there exists a no safe, yet highly effective, bone graft substitute that is well accepted for use in spine fusion procedures. With this work, we show that a three-dimensional printed scaffold containing osteoconductive hydroxyapatite and osteoinductive demineralized bone matrix that promotes new bone spicule formation, osteointegration, and successful fusion (stabilization) when implemented in a preclinical model of spine fusion. Our study suggests that this material shows promise as a recombinant growth factor-free bone graft substitute that could safely promote high rates of successful fusion and improve patient care.

Journal ArticleDOI
TL;DR: Print outcomes were dominated by the speed ratio, with feedrate, flowrate, and cell density having little impact on printing outcomes when controlling for speed ratio within the ranges tested.
Abstract: Bioink printability persists as a limiting factor toward many bioprinting applications. Printing parameter selection is largely user-dependent, and the effect of cell density on printability has no...

Journal ArticleDOI
TL;DR: Hydrogel substrates that exhibit stiffness orders of magnitude lower than standard tissue culture plastic can serve as novel surfaces for the production of MSCs with an improved therapeutic secretory capacity and reduced senescence.
Abstract: Current cell culture surfaces used for the expansion and production of mesenchymal stromal cells (MSCs) are not optimized for the production of highly secretory and nonsenescent cells. In this stud...

Journal ArticleDOI
TL;DR: This model is a promising 3D culture system to evaluate the invasion ability of various cancer cells in vitro and indicates that the epithelial-mesenchymal transition event was induced.
Abstract: The objective of this study is to design a cancer invasion model by making use of cancer-associated fibroblasts (CAF) or tumor-associated macrophages (TAM) and gelatin hydrogel microspheres (GM) fo...

Journal ArticleDOI
TL;DR: Adipose-derived mesenchymal stromal/stem cells (ASCs) represent a commonly used cell source for adipose tissue engineering and have routinely been cultured in conventional 2D cul...
Abstract: Adipose-derived mesenchymal stromal/stem cells (ASCs) represent a commonly used cell source for adipose tissue engineering. In this context, ASCs have routinely been cultured in conventional 2D cul...

Journal ArticleDOI
TL;DR: The importance of "tuning" the application of tissue engineering technology platforms to the specific requirements of diverse VML injuries in order to improve functional outcomes is emphasized.
Abstract: Volumetric muscle loss (VML) injuries, by definition, exceed the endogenous repair capacity of skeletal muscle resulting in permanent structural and functional deficits. VML injuries present a significant burden for both civilian and military medicine. Despite progress, there is still considerable room for therapeutic improvement. In this regard, tissue-engineered constructs show promise for VML repair, as they provide an opportunity to introduce both scaffolding and cellular components. We have pioneered the development of a tissue-engineered muscle repair (TEMR) technology created by seeding muscle progenitor cells onto a porcine-derived bladder acellular matrix followed by cyclic stretch preconditioning before implantation. Our work to date has demonstrated significant functional repair (60-90% functional recovery) in progressively larger rodent models of VML injury following TEMR implantation. Notwithstanding this success, TEMR implantation in cylindrically shaped VML injuries in the tibialis anterior (TA) muscle was associated with more variable functional outcomes than has been observed in sheet-like muscles such as the latissimus dorsi. In fact, previous observations documented a dichotomy of responses following TEMR implantation in a rodent TA VML injury model; with an ≈61% functional improvement observed in fewer than half (46%) of TEMR-implanted animals at 12 weeks postinjury. This current study builds directly from those observations as we modified the geometry of both the VML injury and the TEMR construct to determine if improved matching of the implanted TEMR construct to the surgically created VML injury resulted in increased functional recovery posttreatment. Following these modifications, we observed a comparable degree of functional improvement in a larger proportion of animals (≈67%) that was durable up to 24 weeks post-TEMR implantation. Moreover, in ≈25% of all TEMR-implanted animals, functional recovery was virtually complete (TEMR max responders), and furthermore, the functional recovery in all 67% of responding animals was accompanied by the presence of native-like muscle properties within the repaired TA muscle, including fiber cross-sectional area, fiber type, vascularization, and innervation. This study emphasizes the importance of tuning the application of tissue engineering technology platforms to the specific requirements of diverse VML injuries to improve functional outcomes. Impact Statement This report confirms and extends previous observations with our implantable tissue-engineered technology platform for repair of volumetric muscle loss (VML) injuries. Based on our prior work, we addressed factors hypothesized to be responsible for significant outcome variability following treatment of VML injuries in a rat tibialis anterior model. Through customization of the muscle repair technology to a specific VML injury, we were able to significantly increase the frequency at which functional recovery occurred, and furthermore, demonstrate durability out to 6 months. In addition, the enhanced biomimetic qualities of repaired muscle tissue were associated with the most robust functional outcomes.

Journal ArticleDOI
TL;DR: A collagen-silk hybrid hydrogel with high collagen concentration and with increased stiffness approaching that of natural tissues, which could be of high interest for the development of cardiac patches for myocardial regeneration and for preconditioning of mesenchymal stem cells to improve their therapeutic potential.
Abstract: Type I collagen hydrogels are of high interest in tissue engineering. With the evolution of 3D bioprinting technologies, a high number of collagen-based scaffolds have been reported for the development of 3D cell cultures. A recent proposal was to mix collagen with silk fibroin derived from Bombyx mori silkworm. Nevertheless, due to the difficulties in the preparation and the characteristics of the protein, several problems such as phase separation and collagen denaturation appear during the procedure. Therefore, the common solution is to diminish the concentration of collagen although in that way the most biologically relevant component is reduced. In this study, we present a new, simple, and effective method to develop a collagen-silk hybrid hydrogel with high collagen concentration and with increased stiffness approaching that of natural tissues, which could be of high interest for the development of cardiac patches for myocardial regeneration and for preconditioning of mesenchymal stem cells (MSCs) to improve their therapeutic potential. Sericin in the silk was preserved by using a physical solubilizing procedure that results in a preserved fibrous structure of type I collagen, as shown by ultrastructural imaging. The macro- and micromechanical properties of the hybrid hydrogels measured by tensile stretch and atomic force microscopy, respectively, showed a more than twofold stiffening than the collagen-only hydrogels. Rheological measurements showed improved printability properties for the developed biomaterial. The suitability of the hydrogels for 3D cell culture was assessed by 3D bioprinting bone marrow-derived MSCs cultured within the scaffolds. The result was a biomaterial with improved printability characteristics that better resembled the mechanical properties of natural soft tissues while preserving biocompatibility owing to the high concentration of collagen. Impact statement In this study, we report the development of silk microfiber-reinforced type I collagen hydrogels for 3D bioprinting and cell culture. In contrast with previously reported studies, a novel physical method allowed the preservation of the silk sericin protein. Hydrogels were stable, showed no phase separation between the biomaterials, and they presented improved printability. An increase between two- and threefold of the multiscale stiffness of the scaffolds was achieved with no need of using additional crosslinkers or complex methods, which could be of high relevance for cardiac patches development and for preconditioning mesenchymal stem cells (MSCs) for therapeutic applications. We demonstrate that bone marrow-derived MSCs can be effectively bioprinted and 3D cultured within the stiffened structures.

Journal ArticleDOI
TL;DR: The results further support the use of multiple channel PLG bridges as a growth supportive substrate and platform to deliver bioactive agents to modulate the SCI microenvironment and promote regeneration and functional recovery.
Abstract: One million estimated cases of spinal cord injury (SCI) have been reported in the United States and repairing an injury has constituted a difficult clinical challenge. The complex, dynamic, inhibitory microenvironment postinjury, which is characterized by proinflammatory signaling from invading leukocytes and lack of sufficient factors that promote axonal survival and elongation, limits regeneration. Herein, we investigated the delivery of polycistronic vectors, which have the potential to coexpress factors that target distinct barriers to regeneration, from a multiple channel poly(lactide-co-glycolide) (PLG) bridge to enhance spinal cord regeneration. In this study, we investigated polycistronic delivery of IL-10 that targets proinflammatory signaling, and NT-3 that targets axonal survival and elongation. A significant increase was observed in the density of regenerative macrophages for IL-10+NT-3 condition relative to conditions without IL-10. Furthermore, combined delivery of IL-10+NT-3 produced a significant increase of axonal density and notably myelinated axons compared with all other conditions. A significant increase in functional recovery was observed for IL-10+NT-3 delivery at 12 weeks postinjury that was positively correlated to oligodendrocyte myelinated axon density, suggesting oligodendrocyte-mediated myelination as an important target to improve functional recovery. These results further support the use of multiple channel PLG bridges as a growth supportive substrate and platform to deliver bioactive agents to modulate the SCI microenvironment and promote regeneration and functional recovery. Impact statement Spinal cord injury (SCI) results in a complex microenvironment that contains multiple barriers to regeneration and functional recovery. Multiple factors are necessary to address these barriers to regeneration, and polycistronic lentiviral gene therapy represents a strategy to locally express multiple factors simultaneously. A bicistronic vector encoding IL-10 and NT-3 was delivered from a poly(lactide-co-glycolide) bridge, which provides structural support that guides regeneration, resulting in increased axonal growth, myelination, and subsequent functional recovery. These results demonstrate the opportunity of targeting multiple barriers to SCI regeneration for additive effects.

Journal ArticleDOI
TL;DR: This in vitro microvascularization platform can provide a useful tool to study how various parameters affect islet integration with microv vascular networks, and could also be utilized for studies of vascularization of other organ systems.
Abstract: The pancreatic islet is a highly vascularized micro-organ, and rapid revascularization postislet transplantation is important for islet survival and function. However, the various mechanisms involved in islet revascularization are not fully understood, and we currently lack good in vitro platforms to explore this. Our aim for this study was to generate perfusable microvascular networks in a microfluidic chip device, in which islets could be easily integrated, to establish an in vitro platform for investigations on islet-microvasculature interactions. We compared the ability of mesenchymal stem cells (MSCs) and fibroblasts to support microvascular network formation by human umbilical vein endothelial cells (HUVECs) and human induced pluripotent stem cell-derived endothelial colony-forming cell in two-dimensional and three-dimensional models of angiogenesis, and tested the effect of different culture media on microvessel formation. HUVECs that were supported by MSCs formed patent and perfusable networks in a fibrin gel, whereas networks supported by fibroblasts rapidly regressed. Network morphology could be controlled by adjusting relative cell numbers and densities. Incorporation of isolated rat islets demonstrated that islets recruit local microvasculature in vitro, but that the microvessels did not invade islets, at least during the course of these studies. This in vitro microvascularization platform can provide a useful tool to study how various parameters affect islet integration with microvascular networks and could also be utilized for studies of vascularization of other organ systems. Impact statement To improve pancreatic islet graft survival and function posttransplantation, rapid and adequate revascularization is critical. Efforts to improve islet revascularization are demanding due to an insufficient understanding of the mechanisms involved in the process. We have applied a microfluidics platform to generate microvascular networks, and by incorporating pancreatic islets, we were able to study microvasculature-islet interactions in real time. This platform can provide a useful tool to study islet integration with microvascular networks, and could be utilized for studies of vascularization of other organ systems. Moreover, this work may be adapted toward developing a prevascularized islet construct for transplantation.

Journal ArticleDOI
TL;DR: This work indicates that VML injury progressively induces fibrosis and muscle stiffness, and anti-fibrotic treatment can mitigate the pathologic development of fibrosis.
Abstract: Volumetric muscle loss (VML) resulting from extremity trauma presents functional deficits and fibrosis, ultimately manifesting disability. The extensive fibrotic accumulation is expected to interfe...

Journal ArticleDOI
TL;DR: A sex-dependent temporal profile of blood/brain barrier disruption in a preclinical mouse model of traumatic brain injury (TBI) that contributes to starkly different macromolecule and nanoparticle delivery profiles post-TBI is identified.
Abstract: The development of effective therapeutics for brain disorders is challenging, in particular, the blood-brain barrier (BBB) severely limits access of the therapeutics into the brain parenchyma. Traumatic brain injury (TBI) may lead to transient BBB permeability that affords a unique opportunity for therapeutic delivery via intravenous administration ranging from macromolecules to nanoparticles (NPs) for developing precision therapeutics. In this regard, we address critical gaps in understanding the range/size of therapeutics, delivery window(s), and moreover, the potential impact of biological factors for optimal delivery parameters. Here we show, for the first time, to the best of our knowledge, that 24-h postfocal TBI female mice exhibit a heightened macromolecular tracer and NP accumulation compared with male mice, indicating sex-dependent differences in BBB permeability. Furthermore, we report for the first time the potential to deliver NP-based therapeutics within 3 days after focal injury in both female and male mice. The delineation of injury-induced BBB permeability with respect to sex and temporal profile is essential to more accurately tailor time-dependent precision and personalized nanotherapeutics. Impact statement In this study, we identified a sex-dependent temporal profile of blood/brain barrier disruption in a preclinical mouse model of traumatic brain injury (TBI) that contributes to starkly different macromolecule and nanoparticle delivery profiles post-TBI. The implications and potential impact of this work are profound and far reaching as it indicates that a demand of true personalized medicine for TBI is necessary to deliver the right therapeutic at the right time for the right patient.

Journal ArticleDOI
TL;DR: Three-dimensional and macrophage-encapsulated bone tissues in vitro are engineer to model cell behavior, signaling, and other biological activities in vivo, in comparison to current two-dimensional models to illustrate the important roles that macrophages signaling and inflammation play in bone tissue formation.
Abstract: As musculoskeletal (MSK) disorders continue to increase globally, there is an increased need for novel, in vitro models to efficiently study human bone physiology in the context of both healthy and diseased conditions. For these models, the inclusion of innate immune cells is critical. Specifically, signaling factors generated from macrophages play key roles in the pathogenesis of many MSK processes and diseases, including fracture, osteoarthritis, infection etc. In this study, we aim to engineer three-dimensional (3D) and macrophage-encapsulated bone tissues in vitro, to model cell behavior, signaling, and other biological activities in vivo, in comparison to current two-dimensional models. We first investigated and optimized 3D culture conditions for macrophages, and then co-cultured macrophages with mesenchymal stem cells (MSCs), which were induced to undergo osteogenic differentiation to examine the effect of macrophage on new bone formation. Seeded within a 3D hydrogel scaffold fabricated from photocrosslinked methacrylated gelatin, macrophages maintained high viability and were polarized toward an M1 or M2 phenotype. In co-cultures of macrophages and human MSCs, MSCs displayed immunomodulatory activities by suppressing M1 and enhancing M2 macrophage phenotypes. Lastly, addition of macrophages, regardless of polarization state, increased MSC osteogenic differentiation, compared with MSCs alone, with proinflammatory M1 macrophages enhancing new bone formation most effectively. In summary, this study illustrates the important roles that macrophage signaling and inflammation play in bone tissue formation.

Journal ArticleDOI
TL;DR: The data show that the available cell lines are not suitable for basic and applied research questions whenever functional kinocilia are required and that, rather, hAEC- or human induced pluripotent stem cell-derived tissue models need to be generated.
Abstract: Three-dimensional respiratory tissue models have been generated using, for example, human primary airway epithelial cells (hAEC) or respective cell lines. To investigate ciliopathies, such as prima...

Journal ArticleDOI
TL;DR: Alginate hydrogels can be used to deliver MSCs and thereby recruit endogenous cells through paracrine signaling, but additional osteogenic stimuli are needed to regenerate critical-sized segmental femoral defects in both animal models.
Abstract: Biomaterials with tunable biophysical properties hold great potential for tissue engineering. The adaptive immune system plays an important role in bone regeneration. Our goal is to investigate the...

Journal ArticleDOI
TL;DR: In vivo data shows that the Halofuginone-laden Keratin is non-inferior to other similar approaches reported in literature, indicative that the use of 3D printed keratin is not inhibiting the healing processes, and the inclusion of HalofUGinone induces a more organized dermal healing after a burn.
Abstract: Keratin is a natural material that can be derived from the cortex of human hair. Our group had previously presented a method for the printed, sequential production of three-dimensional (3D) keratin scaffolds. Using a riboflavin-sodium persulfate-hydroquinone (initiator-catalyst-inhibitor) photosensitive solution, we produced 3D keratin-based constructs through ultraviolet crosslinking in a lithography-based 3D printer. In this study, we have used this bioink to produce a keratin-based construct that is capable of delivering small molecules, providing an environment conducive to healing of dermal burn wounds in vivo, and maintaining stability in customized packaging. We characterized the effects of manufacturing steps, such as lyophilization and gamma irradiation sterilization on the properties of 3D printed keratin scaffolds prepared for in vivo testing. Keratin hydrogels are viable for the uptake and release of contracture-inhibiting Halofuginone, a collagen synthesis inhibitor that has been shown to decrease collagen synthesis in fibrosis cases. This small-molecule delivery provides a mechanism to reduce scarring of severe burn wounds in vitro. In vivo data show that the Halofuginone-laden printed keratin is noninferior to other similar approaches reported in literature. This is indicative that the use of 3D printed keratin is not inhibiting the healing processes, and the inclusion of Halofuginone induces a more organized dermal healing after a burn; in other words, this treatment is slower but improves healing. These studies are indicative of the potential of Halofuginone-laden keratin dressings in dermal wound healing. We aim to keep increasing the complexity of the 3D printed constructs toward the production of complex scaffolds for the treatment and topographical reconstruction of severe burn wounds to the face.

Journal ArticleDOI
TL;DR: Biological and engineering principles important in applying 3D printing technology to bone tissue engineering for craniofacial reconstruction are reviewed as well as recent translational advancements in 3D-printed bioactive ceramic scaffold technology are presented.
Abstract: The basic concepts from the fields of biology and engineering are integrated into tissue engineering to develop constructs for the repair of damaged and/or absent tissues, respectively. The field has grown substantially over the past two decades, with particular interest in bone tissue engineering (BTE). Clinically, there are circumstances in which the quantity of bone that is necessary to restore form and function either exceeds the patient's healing capacity or bone's intrinsic regenerative capabilities. Vascularized osseous or osteocutaneous free flaps are the standard of care with autologous bone remaining the gold standard, but is commonly associated with donor site morbidity, graft resorption, increased operating time, and cost. Regardless of the size of a craniofacial defect, from trauma, pathology, and osteonecrosis, surgeons and engineers involved with reconstruction need to consider the complex three-dimensional (3D) geometry of the defect and its relationship to local structures. Three-dimensional printing has garnered significant attention and presents opportunities to use craniofacial BTE as a technology that offers a personalized approach to bony reconstruction. Clinicians and engineers are able to work together to produce patient-specific space-maintaining scaffolds tailored to site-specific defects, which are osteogenic, osseoconductive, osseoinductive, encourage angiogenesis/vasculogenesis, and mechanically stable upon implantation to prevent immediate failure. In this work, we review biological and engineering principles important in applying 3D printing technology to BTE for craniofacial reconstruction as well as present recent translational advancements in 3D printed bioactive ceramic scaffold technology.

Journal ArticleDOI
TL;DR: The results demonstrate that the addition of endothelial cells using a hybrid approach of self-assembly and reseeding generates a mature capillary-like network that has the potential to become functional in vivo, offering an optimized prevascularized HVM model for further translational research.
Abstract: Tissue engineering offers novel therapies for vaginal reconstruction in patients with congenital vaginal agenesis such as Mayer-Rokitansky-Kuster-Hauser (MRKH) syndrome. This study aims to reconstruct a prevascularized tissue-engineered model of human vaginal mucosa (HVM) using the self-assembly approach, free of exogenous materials. In this study, a new cell culture method was used to enhance microcapillary network formation while maintaining sufficient biomechanical properties for surgical manipulation. Human vaginal fibroblasts were coseeded with human umbilical vein endothelial cells (HUVECs). Transduction of HUVEC with a vector that allows the expression of both green fluorescent protein (GFP) and luciferase allowed the monitoring of the formation of a microvascular network in vitro and the assessment of the viability and stability of HUVEC in vivo. Two reconstructed vaginal mucosa grafts, a prevascularized, and a nonvascularized control were implanted subcutaneously on the back of 12 female nude mice and monitored for up to 21 days. Prevascularized grafts demonstrated signs of earlier vascularization compared with controls. However, there were no differences in graft survival outcomes in both groups. The finding of mouse red blood cells within GFP-positive capillaries 1 week after implantation demonstrates the capacity of the reconstructed capillary-like network to connect to the host circulation and sustain blood perfusion in vivo. Furthermore, sites of inosculation between GFP-positive HUVEC and mouse endothelial cells were observed within prevascularized grafts. Our results demonstrate that the addition of endothelial cells using a hybrid approach of self-assembly and reseeding generates a mature capillary-like network that has the potential to become functional in vivo, offering an optimized prevascularized HVM model for further translational research. Impact statement This study introduces a prevascularized tissue-engineered model of human vaginal mucosa (HVM), which is adapted for surgical applications. The prevascularization of tissue-engineered grafts aims to enhance graft survival and is an interesting feature for sexual function. Various scaffold-free cell culture methods were tested to reconstruct a mature microcapillary network within HVM grafts while meeting biomechanical needs for surgery. Moreover, this animal study assesses the vascular functionality of prevascularized grafts in vivo, serving as a proof of concept for further translational applications. This research underlines the continuous efforts to optimize current models to closely mimic native tissues and further improve surgical outcomes.

Journal ArticleDOI
TL;DR: The immune response in mice following implantation of decellularized (DC) cardiac scaffolds derived from pig and mouse is studied to characterize infiltrating cells and identify dominant cell populations in the infiltrate.
Abstract: The immunogenicity of the extracellular matrix (ECM) from genetically similar (syngeneic) and dissimilar (allogeneic and xenogeneic) species has puzzled the scientific community for many years. After implantation, the literature describes an absorption of ECM material since it is biodegradable. However, no clear insight really exists to substantiate how the underlying immune and biological responses result in absorption of ECM materials. In this context, it is important to characterize infiltrating cells and identify dominant cell populations in the infiltrate. We have studied the immune response in mice after implantation of decellularized (DC) cardiac scaffolds derived from pig and mouse. The polymorphism of the infiltrate into the implanted material signifies the importance of the adaptive immune response that is distinct for xenoimplants and alloimplants. Matrix resorption takes place mainly through phagocytic cells such as mast cells, dendritic cells, and macrophages. Histochemical observations show that innate CD8+ T cells develop immune tolerance, whereas proteomic analysis predicts the different T cell progenies for alloscaffolds and xenoscaffolds. The amalgamation of graft tolerance and involvement of both B and T cell populations in the vicinity of the graft could be decisive in wound remodeling and survival of the graft. This challenging area presents potential targets for the development of immune-privileged biomaterials, immune tolerant cells, and therapeutic agents in the future. Impact statement In this study, we have characterized the allogeneic and xenogeneic immune responses for decellularized (DC) cardiac scaffolds. We postulate that although the T cells are important players for immune tolerance of DC graft, the mechanism of their differentiation inside the host is donor specific. In this study, we have reported the distinct immune responses for syngeneic DC scaffolds than allogeneic and xenogeneic scaffolds. This distinct response provides the bases for the different immune responses reported for DC homografts in the literature. This study can provide the greater insight for modification of postimplant strategies to achieve host acceptance of donor extracellular matrix scaffolds.

Journal ArticleDOI
TL;DR: The results demonstrate that 3D printing can be leveraged to create multiphasic gradient constructs to precisely direct the development and function of MSCs, leading to a phenotypic gradient.
Abstract: In this study of three-dimensional (3D) printed composite β-tricalcium phosphate (β-TCP)-/hydroxyapatite/poly(ɛ-caprolactone)-based constructs, the effects of vertical compositional ceramic gradien...

Journal ArticleDOI
TL;DR: The study found that the optically transparent CLC hydrogel possessed biomechanical characteristics suitable for culturing human neural stem/precursor cells and was non-cytotoxic.
Abstract: We evaluated the applicability of chitosan-g-oligo(L,L-lactide) copolymer (CLC) hydrogel for central nervous system tissue engineering. The biomechanical properties of the CLC hydrogel were characterized and its biocompatibility was assessed with neural progenitor cells obtained from two different sources: H9-derived neural stem cells (H9D-NSCs) and directly reprogrammed neural precursor cells (drNPCs). Our study found that the optically transparent CLC hydrogel possessed biomechanical characteristics suitable for culturing human neural stem/precursor cells and was noncytotoxic. When seeded on films prepared from CLC copolymer hydrogel, both H9D-NSC and drNPC adhered well, expanded and exhibited signs of spontaneous differentiation. While H9D-NSC mainly preserved multipotency as shown by a high proportion of Nestin+ and Sox2+ cells and a comparatively lower expression of the neuronal markers βIII-tubulin and MAP2, drNPCs, obtained by direct reprogramming, differentiated more extensively along the neuronal lineage. Our study indicates that the CLC hydrogel may be considered as a substrate for tissue-engineered constructs, applicable for therapy of neurodegenerative diseases. Impact statement We synthetized a chitosan-g-oligo(L,L-lactide) hydrogel that sustained multipotency of embryonic-derived neural stem cells (NSCs) and supported differentiation of directly reprogrammed NSC predominantly along the neuronal lineage. The hydrogel exhibited no cytotoxicity in vitro, both in extraction and contact cytotoxicity tests. When seeded on the hydrogel, both types of NSCs adhered well, expanded, and exhibited signs of spontaneous differentiation. The biomechanical properties of the hydrogel were similar to that of human spinal cord with incised pia mater. These data pave the way for further investigations of the hydrogel toward its applicability in central nervous system tissue engineering.