scispace - formally typeset
Journal ArticleDOI

3D printing of high-strength aluminium alloys

Reads0
Chats0
TLDR
The approach to metal-based additive manufacturing is applicable to a wide range of alloys and can be implemented using a range of additive machines, and provides a foundation for broad industrial applicability, including where electron-beam melting or directed-energy-deposition techniques are used instead of selective laser melting.
Abstract
Metal-based additive manufacturing, or three-dimensional (3D) printing, is a potentially disruptive technology across multiple industries, including the aerospace, biomedical and automotive industries. Building up metal components layer by layer increases design freedom and manufacturing flexibility, thereby enabling complex geometries, increased product customization and shorter time to market, while eliminating traditional economy-of-scale constraints. However, currently only a few alloys, the most relevant being AlSi10Mg, TiAl6V4, CoCr and Inconel 718, can be reliably printed; the vast majority of the more than 5,500 alloys in use today cannot be additively manufactured because the melting and solidification dynamics during the printing process lead to intolerable microstructures with large columnar grains and periodic cracks. Here we demonstrate that these issues can be resolved by introducing nanoparticles of nucleants that control solidification during additive manufacturing. We selected the nucleants on the basis of crystallographic information and assembled them onto 7075 and 6061 series aluminium alloy powders. After functionalization with the nucleants, we found that these high-strength aluminium alloys, which were previously incompatible with additive manufacturing, could be processed successfully using selective laser melting. Crack-free, equiaxed (that is, with grains roughly equal in length, width and height), fine-grained microstructures were achieved, resulting in material strengths comparable to that of wrought material. Our approach to metal-based additive manufacturing is applicable to a wide range of alloys and can be implemented using a range of additive machines. It thus provides a foundation for broad industrial applicability, including where electron-beam melting or directed-energy-deposition techniques are used instead of selective laser melting, and will enable additive manufacturing of other alloy systems, such as non-weldable nickel superalloys and intermetallics. Furthermore, this technology could be used in conventional processing such as in joining, casting and injection moulding, in which solidification cracking and hot tearing are also common issues.

read more

Citations
More filters
Journal ArticleDOI

Additive manufacturing (3D printing): A review of materials, methods, applications and challenges

TL;DR: A comprehensive review of the main 3D printing methods, materials and their development in trending applications was carried out in this paper, where the revolutionary applications of AM in biomedical, aerospace, buildings and protective structures were discussed.
Journal ArticleDOI

3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting

TL;DR: A comprehensive understanding of the interrelation between the various aspects of the subject, as this is essential to demonstrate credibility for industrial needs, is presented in this paper, which highlights some key topics requiring attention for further progression.
Journal ArticleDOI

An overview on 3D printing technology: Technological, materials, and applications

TL;DR: In this paper, the authors present an overview of the types of 3D printing technologies, the application of three-dimensional printing technology and lastly, the materials used for 3-D printing technology in manufacturing industry.
Journal ArticleDOI

A review of selective laser melting of aluminum alloys: Processing, microstructure, property and developing trends

TL;DR: In this paper, the current research status of microstructure, properties and heat treatment of SLM processing aluminum alloys is systematically reviewed respectively and a future outlook is given at the end of this review paper.
Journal ArticleDOI

3D printing of conducting polymers.

TL;DR: A high-performance 3D printable conducting polymer ink based on poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) for 3D printing of conducting polymers is introduced to take full advantage of advanced3D printing.
References
More filters
Journal ArticleDOI

Metal Additive Manufacturing: A Review

TL;DR: The state-of-the-art of additive manufacturing (AM) can be classified into three categories: direct digital manufacturing, free-form fabrication, or 3D printing as discussed by the authors.
Journal ArticleDOI

Recent development in aluminium alloys for the automotive industry

TL;DR: In this paper, the authors present a review of recent developments in aluminium alloys to improve formability, surface quality in both 5000 and 6000 alloys, and the bake hardening response of 6500 alloys.
Journal ArticleDOI

Metal Additive Manufacturing: A Review of Mechanical Properties

TL;DR: A review of published data on the mechanical properties of additively manufactured metallic materials can be found in this paper, where the additive manufacturing techniques utilized to generate samples covered in this review include powder bed fusion (eBM, SLM, DMLS) and directed energy deposition (eBF3).
Journal ArticleDOI

Application of modern aluminum alloys to aircraft

TL;DR: Aluminum alloys have been the primary material of choice for structural components of aircraft since about 1930 as discussed by the authors and have been used extensively in high-performance military aircraft and are being specified for some applications in modern commercial aircraft, including the fuselage, wing, and supporting structure of commercial airliners and military cargo and transport.
Journal ArticleDOI

Steady state columnar and equiaxed growth of dendrites and eutectic

TL;DR: In this article, an analysis for the growth of equiaxed grains ahead of the columnar front during directional solidification is presented, and the model considers both single-phase and eutectic growth.
Related Papers (5)
Trending Questions (3)
Is aluminum used in 3D printer hot ends?

The provided paper does not mention the use of aluminum in 3D printer hot ends.

What are the current challenges and limitations of using 3D printing to manufacture aluminum products?

The current challenges and limitations of using 3D printing to manufacture aluminum products include issues with microstructures, large columnar grains, and periodic cracks.

What are the main challenges in 3D printing aluminum?

The main challenges in 3D printing aluminum are the formation of large columnar grains and periodic cracks during the printing process.