scispace - formally typeset
Open AccessPosted ContentDOI

A causal study of bumetanide on a marker of excitatory-inhibitory balance in the human brain

Reads0
Chats0
TLDR
It is shown that, contrary to expectation, acute administration of bumetanide does not alter binocular rivalry dynamics in neurotypical adult individuals, and this results raise important questions about the efficacy of acute bumeteanide administration for altering E/I balance in the human brain.
Abstract
Bumetanide has received much interest as a potential pharmacological modulator of the putative imbalance in excitatory/inhibitory (E/I) signaling that is thought to characterize autism spectrum conditions. Yet, currently, no studies of bumetanide efficacy have used an outcome measure that is modeled to depend on E/I balance in the brain. In this manuscript, we present the first causal study of the effect of bumetanide on an objective marker of E/I balance in the brain, binocular rivalry, which we have previously shown to be sensitive to pharmacological manipulation of GABA. Using a within-subjects placebo-control crossover design study, we show that, contrary to expectation, acute administration of bumetanide does not alter binocular rivalry dynamics in neurotypical adult individuals. Neither changes in response times nor response criteria can account for these results. These results raise important questions about the efficacy of acute bumetanide administration for altering E/I balance in the human brain, and highlight the importance of studies using objective markers of the underlying neural processes that drugs hope to target.

read more

Content maybe subject to copyright    Report

RUNNING HEAD: BUMETANIDE EFFECTS ON BINOCULAR RIVALRY
1
A causal study of bumetanide on a marker of excitatory-inhibitory balance in the
human brain
Thomas L. Botch
1
, Alina Spiegel
2
, Catherine Ricciardi
3
, Caroline E. Robertson
1+
1
Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH
03755, USA
2
School of Medicine, Johns Hopkins University, Baltimore, MD, 21205
3
Clinical Research Center, Massachusetts Institute of Technology, Cambridge, MA
02139, USA
+
Corresponding author: Dr. Caroline Robertson, caroline.e.robertson@dartmouth.edu
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.304279doi: bioRxiv preprint

BUMETANIDE EFFECTS ON BINOCULAR RIVALRY
2
Abstract
Bumetanide has received much interest as a potential pharmacological modulator of the
putative imbalance in excitatory/inhibitory (E/I) signaling that is thought to characterize
autism spectrum conditions. Yet, currently, no studies of bumetanide efficacy have used
an outcome measure that is modeled to depend on E/I balance in the brain. In this
manuscript, we present the first causal study of the effect of bumetanide on an objective
marker of E/I balance in the brain, binocular rivalry, which we have previously shown to
be sensitive to pharmacological manipulation of GABA. Using a within-subjects placebo-
control crossover design study, we show that, contrary to expectation, acute
administration of bumetanide does not alter binocular rivalry dynamics in neurotypical
adult individuals. Neither changes in response times nor response criteria can account
for these results. These results raise important questions about the efficacy of acute
bumetanide administration for altering E/I balance in the human brain, and highlight the
importance of studies using objective markers of the underlying neural processes that
drugs hope to target.
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.304279doi: bioRxiv preprint

BUMETANIDE EFFECTS ON BINOCULAR RIVALRY
3
Introduction
Excitatory and inhibitory (E/I) activity is balanced in neural systems at multiple spatial
scales [1, 2], and this balance is thought to be critical for typical neural function [35].
Multiple lines of evidence implicate disrupted E/I balance in the neurobiology of Autism
Spectrum Conditions (ASC; autism henceforth) [612]. In particular, studies in both
humans and in animal models suggest that altered inhibitory signaling, mediated by the
neurotransmitter GABA, may characterize the condition [10, 11]. Despite the
accumulating evidence, the intricacies of autism neurobiology are poorly understood,
hindering efforts to develop treatment strategies for the condition.
One prominent developmental account of autism proposes a disruption of an important
neurobiological milestone, known as the GABA-switch, as a potential explanation for
disturbed inhibitory action in the autistic brain [13]. During development, the polarity of
GABAergic action transitions from excitatory (depolarizing) to inhibitory (hyperpolarizing)
due to a progressive reduction in intracellular chloride (Cl-) concentration in principal
neurons [14, 15] -- a developmental sequence that may be disrupted in animal models of
autism [16, 17]. In light of these accounts, it has been posited that augmenting GABAergic
action might provide a promising therapeutic for some symptoms associated with autism
[13, 18].
Bumetanide, a loop diuretic, has proven hopeful in rectifying GABA polarity in valproic
acid and Fragile X animal models of autism [16, 19]. Bumetanide is thought to increase
the hyperpolarizing potential of GABA by blocking NKCC1 receptors, which are
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.304279doi: bioRxiv preprint

BUMETANIDE EFFECTS ON BINOCULAR RIVALRY
4
responsible for Cl- entrance into the cell [20]. Further, some studies of bumetanide in
humans, specifically children with autism, have shown evidence for attenuation of social
symptom severity and improvement of emotion recognition [2123], although, notably,
these benefits are not universally observed [24]. Importantly, to date, direct evidence that
bumetanide increases inhibition in the human brain is lacking, which complicates linking
the reported symptomatic benefits to the drug’s predicted physiological effects.
Therefore, we sought to test the effects of bumetanide on a robust behavioral index of E/I
balance, binocular rivalry. Rivalry is a simple visual phenomenon that is modeled to rely
on the on the balance of inhibition and excitation in visual cortex [2530]. Prior
pharmacological studies in humans reveal a causal link between rivalry dynamics and
GABAergic inhibition using both GABA
A
and GABA
B
modulators [31, 32], as well as a
dependence of rivalry dynamics on tonic levels of GABA in visual cortex [11, 32]. Given
these links between rivalry dynamics and E/I balance in visual cortex, as well as recent
evidence showing altered rivalry dynamics in adult individuals with autism [11, 3335],
rivalry has been suggested as a noninvasive perceptual marker of E/I signaling in visual
cortex, and its putative disturbance in psychiatric conditions, including autism.
Here, we asked whether acute bumetanide administration would alter rivalry dynamics.
We hypothesized that bumetanide would increase the degree to which individuals
predominantly perceive one image fully suppressed from awareness (“perceptual
suppression”), which computational and empirical data suggest is gated by GABAergic
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.304279doi: bioRxiv preprint

BUMETANIDE EFFECTS ON BINOCULAR RIVALRY
5
inhibition [31, 36, 37]. We tested this hypothesis in a within-subjects drug-placebo, cross-
over design pharmacological study of rivalry dynamics in neurotypical adults.
Materials and Methods
Participants. 21 healthy adults (N = 15 female; mean age 22.5 +/- 3.68 SD years)
participated in the study. Written consent was obtained from all participants, and all
studies were approved by the Massachusetts Institute of Technology Institutional Review
Board. All participants had normal or corrected-to-normal vision, were neither pregnant
nor nursing, and were free from: (1) any known history of psychiatric or neurological
conditions; (2) any other diagnosed medical conditions, including a history of heart failure;
(3) any psychiatric medications; and (4) any known drug allergies (including bumetanide).
All studies took place at the MIT Clinical Research Center, under the constant observation
of a research nurse/nurse practitioner (C.R.) and nursing team.
Study drugs: bumetanide (loop-diuretic). Participants participated in a study investigating
the effects of bumetanide (1 mg) on binocular rivalry dynamics. Bumetanide is an FDA-
approved loop-diuretic known to antagonize sodium-potassium-chloride cotransporters,
NKCC1 and NKCC2, which modulate intracellular chloride concentration. At low
concentrations, bumetanide has a high affinity to block NKCC1, thereby reducing
intracellular chloride concentration and, by proxy, altering GABAergic action potentials
[14, 20]. Bumetanide dosage was chosen to fall within the standard prescribed range.
Experimental design: placebo-controlled crossover design. Each participant took part in
a 3-day study, comprised of: a health assessment/practice session (Day 1) and 2
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.304279doi: bioRxiv preprint

Citations
More filters
Journal Article

Reduced perceptual exclusivity during object and grating rivalry in autism.

TL;DR: The authors found that participants with ASC experienced a slower rate of binocular rivalry, driven by longer transitional states between dominant percepts, and these exaggerated transitional states were present at both low and high levels of stimulus complexity (gratings and objects).
References
More filters
Journal ArticleDOI

The Gender Citation Gap in International Relations

TL;DR: This article investigated the extent to which citation and publication patterns differ between men and women in the international relations literature and found that women are systematically cited less than men after controlling for a large number of variables.
Journal ArticleDOI

Sensory perception in autism

TL;DR: It is argued that sensory traits have important implications for the development of animal and computational models of the condition and how difficulties in sensory processing may relate to the other domains of behaviour that characterize autism.
Journal ArticleDOI

GABAA receptor downregulation in brains of subjects with autism

TL;DR: It is demonstrated that GABAA receptors are reduced in three brain regions that have previously been implicated in the pathogenesis of autism, suggesting widespread GABAergic dysfunction in the brains of subjects with autism.
Journal ArticleDOI

Roles of the cation–chloride cotransporters in neurological disease

TL;DR: In the nervous system, the intracellular chloride concentration ([Cl−]i) determines the strength and polarity of γ-aminobutyric acid (GABA)-mediated neurotransmission and represents attractive therapeutic targets in neurological disorders the pathogenesis of which involves deranged cellular chloride homoestasis.
Related Papers (5)