scispace - formally typeset
Open AccessJournal ArticleDOI

A DNA-Based Registry for All Animal Species: The Barcode Index Number (BIN) System

Sujeevan Ratnasingham, +1 more
- 08 Jul 2013 - 
- Vol. 8, Iss: 7, pp 1-16
TLDR
A persistent, species-level taxonomic registry for the animal kingdom is developed based on the analysis of patterns of nucleotide variation in the barcode region of the cytochrome c oxidase I (COI) gene.
Abstract
Because many animal species are undescribed, and because the identification of known species is often difficult, interim taxonomic nomenclature has often been used in biodiversity analysis. By assigning individuals to presumptive species, called operational taxonomic units (OTUs), these systems speed investigations into the patterning of biodiversity and enable studies that would otherwise be impossible. Although OTUs have conventionally been separated through their morphological divergence, DNA-based delineations are not only feasible, but have important advantages. OTU designation can be automated, data can be readily archived, and results can be easily compared among investigations. This study exploits these attributes to develop a persistent, species-level taxonomic registry for the animal kingdom based on the analysis of patterns of nucleotide variation in the barcode region of the cytochrome c oxidase I (COI) gene. It begins by examining the correspondence between groups of specimens identified to a species through prior taxonomic work and those inferred from the analysis of COI sequence variation using one new (RESL) and four established (ABGD, CROP, GMYC, jMOTU) algorithms. It subsequently describes the implementation, and structural attributes of the Barcode Index Number (BIN) system. Aside from a pragmatic role in biodiversity assessments, BINs will aid revisionary taxonomy by flagging possible cases of synonymy, and by collating geographical information, descriptive metadata, and images for specimens that are likely to belong to the same species, even if it is undescribed. More than 274,000 BIN web pages are now available, creating a biodiversity resource that is positioned for rapid growth.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

The biodiversity of species and their rates of extinction, distribution, and protection

TL;DR: The biodiversity of eukaryote species and their extinction rates, distributions, and protection is reviewed, and what the future rates of species extinction will be, how well protected areas will slow extinction Rates, and how the remaining gaps in knowledge might be filled are reviewed.
Journal ArticleDOI

Clumpak: a program for identifying clustering modes and packaging population structure inferences across K

TL;DR: Clumpak, available at http://clumpak.tau.ac.il, simplifies the use of model-based analyses of population structure in population genetics and molecular ecology by automating the postprocessing of results of model‐based population structure analyses.
Journal ArticleDOI

NCBI Taxonomy: a comprehensive update on curation, resources and tools.

TL;DR: The National Center for Biotechnology Information (NCBI) Taxonomy includes organism names and classifications for every sequence in the nucleotide and protein sequence databases of the International Nucleotide Sequence Database Collaboration.
Journal ArticleDOI

Insect decline in the Anthropocene: Death by a thousand cuts

TL;DR: Wagner et al. as discussed by the authors found that more than half of all amphibians are imperiled and more than 80% of all vertebrate species are in danger of extinction over the next few decades.
Journal ArticleDOI

Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo

TL;DR: The multi‐rate PTP is introduced, an improved method that alleviates the theoretical and technical shortcomings of PTP and consistently yields more accurate delimitations with respect to the taxonomy (i.e., identifies more taxonomic species, infers species numbers closer to theTaxonomy).
References
More filters
Journal ArticleDOI

MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform

TL;DR: A simplified scoring system is proposed that performs well for reducing CPU time and increasing the accuracy of alignments even for sequences having large insertions or extensions as well as distantly related sequences of similar length.
Journal ArticleDOI

A general method applicable to the search for similarities in the amino acid sequence of two proteins

TL;DR: A computer adaptable method for finding similarities in the amino acid sequences of two proteins has been developed and it is possible to determine whether significant homology exists between the proteins to trace their possible evolutionary development.
Journal ArticleDOI

APE: Analyses of Phylogenetics and Evolution in R language

TL;DR: UNLABELLED Analysis of Phylogenetics and Evolution (APE) is a package written in the R language for use in molecular evolution and phylogenetics that provides both utility functions for reading and writing data and manipulating phylogenetic trees.
Journal ArticleDOI

Biological identifications through DNA barcodes

TL;DR: It is established that the mitochondrial gene cytochrome c oxidase I (COI) can serve as the core of a global bioidentification system for animals and will provide a reliable, cost–effective and accessible solution to the current problem of species identification.
Journal ArticleDOI

Pfam: the protein families database.

TL;DR: Pfam as discussed by the authors is a widely used database of protein families, containing 14 831 manually curated entries in the current version, version 27.0, and has been updated several times since 2012.
Related Papers (5)