scispace - formally typeset
Journal ArticleDOI

A meta-analysis of responses of soil biota to global change

TLDR
It is found that the positive effect size of elevated CO2 on the abundance of soil biota diminished with time, whereas the negative effect sizes of warming and positive effectsize of precipitation intensified with time.
Abstract
Global environmental changes are expected to impact the abundance of plants and animals aboveground, but comparably little is known about the responses of belowground organisms. Using meta-analysis, we synthe- sized results from over 75 manipulative experiments in order to test for patterns in the effects of elevated CO2, warming, and altered precipitation on the abundance of soil biota related to taxonomy, body size, feeding habits, eco- system type, local climate, treatment magnitude and duration, and greenhouse CO2 enrichment. We found that the positive effect size of elevated CO2 on the abundance of soil biota diminished with time, whereas the negative effect size of warming and positive effect size of precipi- tation intensified with time. Trophic group, body size, and experimental approaches best explained the responses of soil biota to elevated CO2, whereas local climate and ecosystem type best explained responses to warming and altered precipitation. The abundance of microflora and microfauna, and particularly detritivores, increased with elevated CO2, indicative of microbial C limitation under ambient CO2. However, the effects of CO2 were smaller in field studies than in greenhouse studies and were not sig- nificant for higher trophic levels. Effects of warming did not depend on taxon or body size, but reduced abundances were more likely to occur at the colder and drier sites. Precipitation limited all taxa and trophic groups, particu- larly in forest ecosystems. Our meta-analysis suggests that the responses of soil biota to global change are predictable and unique for each global change factor.

read more

Citations
More filters
Journal ArticleDOI

The significance of soils and soil science towards realization of the United Nations sustainable development goals

TL;DR: In this paper, the authors explore and discuss how soil scientists can help to reach the recently adopted UN Sustainable Development Goals (SDGs) in the most effective manner and recommend the following steps to be taken by the soil science community as a whole: (i) embrace the UN SDGs, as they provide a platform that allows soil science to demonstrate its relevance for realizing a sustainable society by 2030; (ii) show the specific value of soil science: research should explicitly show how using modern soil information can improve the results of inter-and transdisciplinary studies on SDGs related to food security
Journal ArticleDOI

Rapid responses of soil microorganisms improve plant fitness in novel environments

TL;DR: Examination of plant adaptation to drought stress in a multigeneration experiment that manipulated aboveground–belowground feedbacks between plants and soil microbial communities suggests that plants may not be limited to “adapt or migrate” strategies; instead, they also may benefit from association with interacting species, especially diverse soil microbial Communities that respond rapidly to environmental change.

Biodiversity effects on soil processes explained by interspecific functional dissimilarity

TL;DR: In this paper, the authors used soil microcosms to show that functional dissimilarity among detritivorous species, not species number, drives community compositional effects on leaf litter mass loss and soil respiration, two key soil ecosystem processes.
Journal ArticleDOI

Direct and indirect effects of climate change on soil microbial and soil microbial‐plant interactions: What lies ahead?

TL;DR: How climatic change affects soil microbes and soil microbe-plant interactions directly and indirectly is explored, and what ramifications changes in these interactions may have on the composition and function of ecosystems are discussed.
References
More filters
Journal ArticleDOI

Ecological responses to recent climate change.

TL;DR: A review of the ecological impacts of recent climate change exposes a coherent pattern of ecological change across systems, from polar terrestrial to tropical marine environments.
Journal ArticleDOI

Ecological and Evolutionary Responses to Recent Climate Change

TL;DR: Range-restricted species, particularly polar and mountaintop species, show severe range contractions and have been the first groups in which entire species have gone extinct due to recent climate change.
Book

The Ecological Implications of Body Size

TL;DR: In this paper, a philosophical introduction is given to logarithms, power curves, and correlations, and a mathematical primer: logarsithm, power curve and correlations.
Journal ArticleDOI

Community Structure, Population Control, and Competition

TL;DR: Populations of producers, carnivores, and decomposers are limited by their respective resources in the classical density-dependent fashion and interspecific competition must necessarily exist among the members of each of these three trophic levels.
Journal ArticleDOI

What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2.

TL;DR: The results from this review may provide the most plausible estimates of how plants in their native environments and field-grown crops will respond to rising atmospheric [CO(2)]; but even with FACE there are limitations, which are discussed.
Related Papers (5)