scispace - formally typeset
Search or ask a question

Showing papers in "Ecosphere in 2015"


Journal ArticleDOI
TL;DR: In this article, the authors identify ten contrasting perspectives that shape the vulnerability debate but have not been discussed collectively and present a set of global vulnerability drivers that are known with high confidence: (1) droughts eventually occur everywhere; (2) warming produces hotter Droughts; (3) atmospheric moisture demand increases nonlinearly with temperature during drought; (4) mortality can occur faster in hotter Drought, consistent with fundamental physiology; (5) shorter Drought can become lethal under warming, increasing the frequency of lethal Drought; and (6) mortality happens rapidly
Abstract: Patterns, mechanisms, projections, and consequences of tree mortality and associated broad-scale forest die-off due to drought accompanied by warmer temperatures—“hotter drought”, an emerging characteristic of the Anthropocene—are the focus of rapidly expanding literature. Despite recent observational, experimental, and modeling studies suggesting increased vulnerability of trees to hotter drought and associated pests and pathogens, substantial debate remains among research, management and policy-making communities regarding future tree mortality risks. We summarize key mortality-relevant findings, differentiating between those implying lesser versus greater levels of vulnerability. Evidence suggesting lesser vulnerability includes forest benefits of elevated [CO2] and increased water-use efficiency; observed and modeled increases in forest growth and canopy greening; widespread increases in woody-plant biomass, density, and extent; compensatory physiological, morphological, and genetic mechanisms; dampening ecological feedbacks; and potential mitigation by forest management. In contrast, recent studies document more rapid mortality under hotter drought due to negative tree physiological responses and accelerated biotic attacks. Additional evidence suggesting greater vulnerability includes rising background mortality rates; projected increases in drought frequency, intensity, and duration; limitations of vegetation models such as inadequately represented mortality processes; warming feedbacks from die-off; and wildfire synergies. Grouping these findings we identify ten contrasting perspectives that shape the vulnerability debate but have not been discussed collectively. We also present a set of global vulnerability drivers that are known with high confidence: (1) droughts eventually occur everywhere; (2) warming produces hotter droughts; (3) atmospheric moisture demand increases nonlinearly with temperature during drought; (4) mortality can occur faster in hotter drought, consistent with fundamental physiology; (5) shorter droughts occur more frequently than longer droughts and can become lethal under warming, increasing the frequency of lethal drought nonlinearly; and (6) mortality happens rapidly relative to growth intervals needed for forest recovery. These high-confidence drivers, in concert with research supporting greater vulnerability perspectives, support an overall viewpoint of greater forest vulnerability globally. We surmise that mortality vulnerability is being discounted in part due to difficulties in predicting threshold responses to extreme climate events. Given the profound ecological and societal implications of underestimating global vulnerability to hotter drought, we highlight urgent challenges for research, management, and policy-making communities.

1,786 citations


Journal ArticleDOI
TL;DR: Salinization, a widespread threat to the structure and ecological functioning of inland and coastal wetlands, is currently occurring at an unprecedented rate and geographic scale as discussed by the authors, and the causes of salinization are diverse and include alterations to freshwater flows, land-clearance, irrigation, disposal of wastewater effluent, sea level rise, storm surges, and applications of de-icing salts.
Abstract: Salinization, a widespread threat to the structure and ecological functioning of inland and coastal wetlands, is currently occurring at an unprecedented rate and geographic scale. The causes of salinization are diverse and include alterations to freshwater flows, land-clearance, irrigation, disposal of wastewater effluent, sea level rise, storm surges, and applications of de-icing salts. Climate change and anthropogenic modifications to the hydrologic cycle are expected to further increase the extent and severity of wetland salinization. Salinization alters the fundamental physicochemical nature of the soil-water environment, increasing ionic concentrations and altering chemical equilibria and mineral solubility. Increased concentrations of solutes, especially sulfate, alter the biogeochemical cycling of major elements including carbon, nitrogen, phosphorus, sulfur, iron, and silica. The effects of salinization on wetland biogeochemistry typically include decreased inorganic nitrogen removal (with implica...

566 citations


Journal ArticleDOI
TL;DR: How climatic change affects soil microbes and soil microbe-plant interactions directly and indirectly is explored, and what ramifications changes in these interactions may have on the composition and function of ecosystems are discussed.
Abstract: Global change is altering species distributions and thus interactions among organisms. Organisms live in concert with thousands of other species, some beneficial, some pathogenic, some which have little to no effect in complex communities. Since natural communities are composed of organisms with very different life history traits and dispersal ability it is unlikely they will all respond to climatic change in a similar way. Disjuncts in plant-pollinator and plant-herbivore interactions under global change have been relatively well described, but plant-soil microorganism and soil microbe-microbe relationships have received less attention. Since soil microorganisms regulate nutrient transformations, provide plants with nutrients, allow co-existence among neighbors, and control plant populations, changes in soil microorganism-plant interactions could have significant ramifications for plant community composition and ecosystem function. In this paper we explore how climatic change affects soil microbes and soil microbe-plant interactions directly and indirectly, discuss what we see as emerging and exciting questions and areas for future research, and discuss what ramifications changes in these interactions may have on the composition and function of ecosystems.

429 citations


Journal ArticleDOI
TL;DR: This review of conceptual developments in restoration ecology over the last 30 years is reviewed in the context of changing restoration goals which reflect increased societal awareness of the scale of environmental degradation and the recognition that inter-disciplinary approaches are needed to tackle environmental problems.
Abstract: Simultaneous environmental changes challenge biodiversity persistence and human wellbeing. The science and practice of restoration ecology, in collaboration with other disciplines, can contribute to overcoming these challenges. This endeavor requires a solid conceptual foundation based in empirical research which confronts, tests and influences theoretical developments. We review conceptual developments in restoration ecology over the last 30 years. We frame our review in the context of changing restoration goals which reflect increased societal awareness of the scale of environmental degradation and the recognition that inter-disciplinary approaches are needed to tackle environmental problems. Restoration ecology now encompasses facilitative interactions and network dynamics, trophic cascades, and above- and below ground linkages. It operates in a non-equilibrium, alternative states framework, at the landscape scale, and in response to changing environmental, economic and social conditions. Progress has been marked by conceptual advances in the fields of trait-environment relationships, community assembly, and understanding the links between biodiversity and ecosystem functioning. Conceptual and practical advances have been enhanced by applying evolving technologies, including treatments to increase seed germination and overcome recruitment bottlenecks, high throughput DNA sequencing to elucidate soil community structure and function, and advances in satellite technology and GPS tracking to monitor habitat use. The synthesis of these technologies with systematic reviews of context dependencies in restoration success, model based analyses and consideration of complex socio-ecological systems will allow generalizations to inform evidence based interventions. Ongoing challenges include setting realistic, socially acceptable goals for restoration under changing environmental conditions, and prioritizing actions in an increasingly space-competitive world. Ethical questions also surround the use of genetically modified material, translocations, taxon substitutions, and de-extinction, in restoration ecology. Addressing these issues, as the Ecological Society of America looks to its next century, will require current and future generations of researchers and practitioners, including economists, engineers, philosophers, landscape architects, social scientists and restoration ecologists, to work together with communities and governments to rise to the environmental challenges of the coming decades.

385 citations


Journal ArticleDOI
TL;DR: In this article, a broad synthesis of the literature, and across multiple biomes, disturbance interactions are placed into a unified framework around the concept of changing ecosystem resistance (linked interactions, alterations to likelihood, extent, or severity) or ecosystem resilience (e.g., reduced ecosystem resilience and regime shifts).
Abstract: Disturbances are fundamental components of ecosystems and, in many cases, a dominant driver of ecosystem structure and function at multiple spatial and temporal scales. While the effect of any one disturbance may be relatively well understood, multiple interacting disturbances can cause unexpected disturbance behavior (e.g., larger extents), altered return likelihoods, or reduced ecosystem resilience and regime shifts. Given the long-lasting implications of such events, and the potential for changes in disturbance rates driven by climate change and increasing anthropogenic pressures, developing a broad conceptual understanding and some predictive ability regarding the likelihood of interactions between disturbances is crucial. Through a broad synthesis of the literature, and across multiple biomes, disturbance interactions are placed into a unified framework around the concept of changing ecosystem resistance (“linked interactions,” alterations to likelihood, extent, or severity) or ecosystem resilience (...

241 citations


Journal ArticleDOI
TL;DR: In this article, scenario planning and statistical modeling are used to explain and predict playa wetland inundation and ponded area in the Rainwater Basin, an anthropogenically altered landscape that provides critical stopover habitat for migratory waterbirds.
Abstract: In the present period of rapid, worldwide change in climate and landuse (i.e., global change), successful biodiversity conservation warrants proactive management responses, especially for long-distance migratory species. However, the development and implementation of management strategies can be impeded by high levels of uncertainty and low levels of control over potentially impactful future events and their effects. Scenario planning and modeling are useful tools for expanding perspectives and informing decisions under these conditions. We coupled scenario planning and statistical modeling to explain and predict playa wetland inundation (i.e., presence/absence of water) and ponded area (i.e., extent of water) in the Rainwater Basin, an anthropogenically altered landscape that provides critical stopover habitat for migratory waterbirds. Inundation and ponded area models for total wetlands, those embedded in rowcrop fields, and those not embedded in rowcrop fields were trained and tested with wetland ponding data from 2004 and 2006–2009, and then used to make additional predictions under two alternative climate change scenarios for the year 2050, yielding a total of six predictive models and 18 prediction sets. Model performance ranged from moderate to good, with inundation models outperforming ponded area models, and models for non-rowcrop-embedded wetlands outperforming models for total wetlands and rowcrop-embedded wetlands. Model predictions indicate that if the temperature and precipitation changes assumed under our climate change scenarios occur, wetland stopover habitat availability in the Rainwater Basin could decrease in the future. The results of this and similar studies could be aggregated to increase knowledge about the potential spatial and temporal distributions of future stopover habitat along migration corridors, and to develop and prioritize multi-scale management actions aimed at mitigating the detrimental effects of global change on migratory waterbird populations.

223 citations


Journal ArticleDOI
TL;DR: In this article, the authors draw attention to the potential for pelagic bloom-forming cyanobacteria to have substantial effects on nutrient cycling and ecosystem resilience across a wide range of lakes by tapping into pools of nitrogen (N) and phosphorus (P) not usually accessible to phytoplankton.
Abstract: Here we draw attention to the potential for pelagic bloom-forming cyanobacteria to have substantial effects on nutrient cycling and ecosystem resilience across a wide range of lakes. Specifically, we hypothesize that cyanobacterial blooms can influence lake nutrient cycling, resilience, and regime shifts by tapping into pools of nitrogen (N) and phosphorus (P) not usually accessible to phytoplankton. The ability of many cyanobacterial taxa to fix dissolved N2 gas is a well-known potential source of N, but some taxa can also access pools of P in sediments and bottom waters. Both of these nutrients can be released to the water column via leakage or mortality, thereby increasing nutrient availability for other phytoplankton and microbes. Moreover, cyanobacterial blooms are not restricted to high nutrient (eutrophic) lakes: blooms also occur in lakes with low nutrient concentrations, suggesting that changes in nutrient cycling and ecosystem resilience mediated by cyanobacteria could affect lakes across a gradient of nutrient concentrations. We used a simple model of coupled N and P cycles to explore the effects of cyanobacteria on nutrient dynamics and resilience. Consistent with our hypothesis, parameters reflecting cyanobacterial modification of N and P cycling alter the number, location, and/or stability of model equilibria. In particular, the model demonstrates that blooms of cyanobacteria in low-nutrient conditions can facilitate a shift to the high-nutrient state by reducing the resilience of the low-nutrient state. This suggests that cyanobacterial blooms warrant attention as potential drivers of the transition from a low-nutrient, clear-water regime to a high-nutrient, turbid-water regime, a prediction of particular concern given that such blooms are reported to be increasing in many regions of the world due in part to global climate change.

216 citations


Journal ArticleDOI
TL;DR: The authors found that fires in forest types characterized by fuel-limited fire regimes (e.g., yellow pine and mixed conifer forest) tend to burn with greater proportions of high-severity fire as either time since last fire or the mean modern fire return interval (FRI) increases.
Abstract: Fire is one of the most important natural disturbance processes in the western United States and ecosystems differ markedly with respect to their ecological and evolutionary relationships with fire. Reference fire regimes in forested ecosystems can be categorized along a gradient ranging from “fuel-limited” to “climate-limited” where the former types are often characterized by frequent, lower-severity wildfires and the latter by infrequent, more severe wildfires. Using spatial data on fire severity from 1984–2011 and metrics related to fire frequency, we tested how divergence from historic (pre-Euroamerican settlement) fire frequencies due to a century of fire suppression influences rates of high-severity fire in five forest types in California. With some variation among bioregions, our results suggest that fires in forest types characterized by fuel-limited fire regimes (e.g., yellow pine and mixed conifer forest) tend to burn with greater proportions of high-severity fire as either time since last fire or the mean modern fire return interval (FRI) increases. Two intermediate fire regime types (mixed evergreen and bigcone Douglas-fir) showed a similar relationship between fire frequency and fire severity. However, red fir and redwood forests, which are characterized by more climate-limited fire regimes, did not show significant positive relationships between FRI and fire severity. This analysis provides strong evidence that for fuel-limited fire regimes, lack of fire leads to increasing rates of high-severity burning. Our study also substantiates the general validity of “fuel-limited” vs. “climate-limited” explanations of differing patterns of fire effects and response in forest types of the western US.

209 citations


Journal ArticleDOI
TL;DR: In this paper, the authors conducted a systematic literature survey with a quantitative statistical analysis intended to define a robust relationship between measurable variables and N2 fixation, and found highly significant correlations between total N accumulation in shoot matter and fixed N2 in forage.
Abstract: Management of nitrogen (N) inputs into agricultural systems is of increasing interest due to the intensive use of synthetic fertilizers in modern cash crop systems, which has caused considerable environmental damage, including nitrate contamination of surface and groundwater, eutrophication of coastal marine areas and emission of greenhouse gases. The use of legumes grown in rotations or intercropping is nowadays regarded as an alternative and sustainable way of introducing N into low-input cropping systems. In order to develop a simple tool to assess biological nitrogen fixation (BNF) by legume pulse and forages within crop rotations, we conducted a systematic literature survey with a quantitative statistical analysis intended to define a robust relationship between measurable variables and N2 fixation. We found highly significant correlations between total N accumulation in shoot matter and fixed N2 in forage (y = 0.79x − 0.49) and grain (y = 0.70x + 1.01) legumes. Accurately estimating the contribution...

172 citations


Journal ArticleDOI
TL;DR: In this paper, a comparative study on the implications of using habitat suitability versus genetic data for determining effective landscape distances (a proxy inversely related to isolation among patches) based on least-cost and circuit-theoretic approaches, and for identifying potential movement corridors.
Abstract: Resistance models provide a key foundation for landscape connectivity analyses and are widely used to delineate wildlife corridors. Currently, there is no general consensus regarding the most effective empirical methods to parameterize resistance models, but habitat data (species' presence data and related habitat suitability models) and genetic data are the most widely used and advocated approaches. However, the practical consequences of applying one or the other approach have not been well studied. To address this knowledge gap, we performed a comparative study on the implications of using habitat suitability versus genetic data for determining effective landscape distances (a proxy inversely related to isolation among patches) based on least-cost and circuit-theoretic approaches, and for identifying potential movement corridors. For our comparison, we used data for the Cantabrian brown bear in Spain, an endangered population for which connectivity has been identified as a major conservation concern. Ou...

169 citations


Journal ArticleDOI
TL;DR: Several key shifts in mindset are described that underpin the transition to more open science, including thinking about data stewardship rather than data ownership, embracing transparency throughout the data life-cycle and project duration, and accepting critique in public.
Abstract: The field of ecology is poised to take advantage of emerging technologies that facilitate the gathering, analyzing, and sharing of data, methods, and results. The concept of transparency at all stages of the research process, coupled with free and open access to data, code, and papers, constitutes “open science.” Despite the many benefits of an open approach to science, a number of barriers to entry exist that may prevent researchers from embracing openness in their own work. Here we describe several key shifts in mindset that underpin the transition to more open science. These shifts in mindset include thinking about data stewardship rather than data ownership, embracing transparency throughout the data life-cycle and project duration, and accepting critique in public. Though foreign and perhaps frightening at first, these changes in thinking stand to benefit the field of ecology by fostering collegiality and broadening access to data and findings. We present an overview of tools and best practices that ...

Journal ArticleDOI
TL;DR: This article used a robust 1911 historical dataset that covers a large geographic extent and has unbiased sampling locations to compare past and current forest conditions for ponderosa pine and mixed conifer forests in the southern Sierra Nevada.
Abstract: Many managers today are tasked with restoring forests to mitigate the potential for uncharacteristically severe fire. One challenge to this mandate is the lack of large-scale reference information on forest structure prior to impacts from Euro-American settlement. We used a robust 1911 historical dataset that covers a large geographic extent (>10,000 ha) and has unbiased sampling locations to compare past and current forest conditions for ponderosa pine and mixed conifer forests in the southern Sierra Nevada. The 1911 dataset contained records from 18,052 trees in 378 sampled transects, totaling just over 300 ha in transect area. Forest structure was highly variable in 1911 and shrubs were found in 54% of transects. Total tree basal area ranged from 1 to 60 m2 ha−1 and tree density from 2 to 170 ha−1 (based on trees >30 cm dbh). K-means cluster analysis divided transects into four groups: mixed conifer-high basal area (MC High BA), mixed conifer-average basal area (MC Ave BA), mixed conifer-average basal ...

Journal ArticleDOI
TL;DR: This article developed a model of expected area burned for the western US as a function of climate from 1984 to 2012, and quantified departures from expected areas burned to identify geographic regions with fire deficit or surplus, and found that large expanses of non-forested regions experienced a fire surplus, presumably due to introduced annual grasses and the prevalence of anthropogenic ignitions.
Abstract: Wildland fire is an important disturbance agent in the western US and globally. However, the natural role of fire has been disrupted in many regions due to the influence of human activities, which have the potential to either exclude or promote fire, resulting in a “fire deficit” or “fire surplus”, respectively. In this study, we developed a model of expected area burned for the western US as a function of climate from 1984 to 2012. We then quantified departures from expected area burned to identify geographic regions with fire deficit or surplus. We developed our model of area burned as a function of several climatic variables from reference areas with low human influence; the relationship between climate and fire is strong in these areas. We then quantified the degree of fire deficit or surplus for all areas of the western US as the difference between expected (as predicted with the model) and observed area burned from 1984 to 2012. Results indicate that many forested areas in the western US experienced a fire deficit from 1984 to 2012, likely due to fire exclusion by human activities. We also found that large expanses of non-forested regions experienced a fire surplus, presumably due to introduced annual grasses and the prevalence of anthropogenic ignitions. The heterogeneity in patterns of fire deficit and surplus among ecoregions emphasizes fundamentally different ecosystem sensitivities to human influences and suggests that large-scale adaptation and mitigation strategies will be necessary in order to restore and maintain resilient, healthy, and naturally functioning ecosystems.

Journal ArticleDOI
TL;DR: This article examined the spatiotemporal patterns, trends, and drivers of WUE at the global scale from 2000 to 2013 using the gridded GPP and ET data derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) and found that the global WUE has an average value of 1.70 g C/kg H2O with large spatial variability during the 14-year period.
Abstract: Water use efficiency (WUE; gross primary production [GPP]/evapotranspiration [ET]) estimates the tradeoff between carbon gain and water loss during photosynthesis and is an important link of the carbon and water cycles. Understanding the spatiotemporal patterns and drivers of WUE is helpful for projecting the responses of ecosystems to climate change. Here we examine the spatiotemporal patterns, trends, and drivers of WUE at the global scale from 2000 to 2013 using the gridded GPP and ET data derived from the Moderate Resolution Imaging Spectroradiometer (MODIS). Our results show that the global WUE has an average value of 1.70 g C/kg H2O with large spatial variability during the 14-year period. WUE exhibits large variability with latitude. WUE also varies much with elevation: it first remains relatively constant as the elevation varies from 0 to 1000 m and then decreases dramatically. WUE generally increases as precipitation and specific humidity increase; whereas it decreases after reaching maxima as temperature and solar radiation increases. In most land areas, the temporal trend of WUE is positively correlated with precipitation and specific humidity over the 14-year period; while it has a negative relationship with temperature and solar radiation related to global warming and dimming. On average, WUE shows an increasing trend of 0.0025 g C·kg−1 H2O·yr−1 globally. Our global-scale assessment of WUE has implications for improving our understanding of the linkages between the water and carbon cycles and for better projecting the responses of ecosystems to climate change.

Journal ArticleDOI
TL;DR: In this paper, the authors compared aboveground biomass of trees, shrubs and herbs for eleven natural and human-influenced habitat types occurring over a wide elevation gradient (866-4550 m) at the world's highest solitary mountain, Mount Kilimanjaro.
Abstract: The protection and sustainable management of forest carbon stocks, particularly in the tropics, is a key factor in the mitigation of global change effects. However, our knowledge of how land use and elevation affect carbon stocks in tropical ecosystems is very limited. We compared aboveground biomass of trees, shrubs and herbs for eleven natural and human-influenced habitat types occurring over a wide elevation gradient (866–4550 m) at the world's highest solitary mountain, Mount Kilimanjaro. Thanks to the enormous elevation gradient, we covered important natural habitat types, e.g., savanna woodlands, montane rainforest and afro-alpine vegetation, as well as important land-use types such as maize fields, grasslands, traditional home gardens, coffee plantations and selectively logged forest. To assess tree and shrub biomass with pantropical allometric equations, we measured tree height, diameter at breast height and wood density and to assess herbaceous biomass, we sampled destructively. Among natural habitats, tree biomass was highest at intermediate elevation in the montane zone (340 Mg ha−1), shrub biomass declined linearly from 7 Mg ha−1 at 900 m to zero above 4000 m, and, inverse to tree biomass, herbaceous biomass was lower at mid-elevations (1 Mg ha−1) than in savannas (900 m, 3 Mg ha−1) or alpine vegetation (above 4000 m, 6 Mg ha−1). While the various land-use types dramatically decreased woody biomass at all elevations, though to various degrees, herbaceous biomass was typically increased. Our study highlights tropical montane forest biomass as important aboveground carbon stock and quantifies the extent of the strong aboveground biomass reductions by the major land-use types, common to East Africa. Further, it shows that elevation and land use differently affect different vegetation strata, and thus the matrix for other organisms.

Journal ArticleDOI
TL;DR: It was found that the strength of feedback experienced by a plant species was positively correlated with that species' successional stage, indicating that plant-soil feedbacks can contribute to shifts in plant species abundance during succession.
Abstract: Plant-soil feedbacks can contribute to the coexistence of plant species and may predict the abundance of plant species within communities. Here, we test if plant-soil feedbacks act as drivers of secondary succession. We found that the strength of feedback experienced by a plant species was positively correlated with that species' successional stage, indicating that plant-soil feedbacks can contribute to shifts in plant species abundance during succession. We did not observe a significant relationship between strength of feedback and plant species abundance at our study sites, but the positive relationship of feedback and successional stage would generate positive relationships between feedback and the abundance of plant species in communities at equilibrium. This result is supported by spatially explicit simulation models that demonstrate the potential for plant-soil feedbacks to determine changes in species abundance over time and the increasing strength of the relationship between feedback and plant species abundance during succession.

Journal ArticleDOI
TL;DR: In this paper, water surface areas of 141 randomly selected semipermanent and permanent wetlands across the Prairie Pothole Region of North Dakota, USA were digitized from aerial photography during historical and current eras and the results indicated that water surface area are currently 86% greater in sample wetlands than they were historically and that differences can be attributed to consolidation drainage.
Abstract: Depressional wetlands are productive and unique ecosystems found around the world. Their value is due, in part, to their dynamic nature, in which water levels fluctuate in response to climate, occasionally drying out. However, many wetlands have been altered by consolidation drainage, where multiple, smaller wetlands are drained into fewer, larger, wetlands causing higher water levels. We evaluated whether current (2003–2010) water surface areas were greater than historical (1937–1969) water surface areas of 141 randomly selected semipermanent and permanent wetlands across the Prairie Pothole Region of North Dakota, USA. We also evaluated whether differences between historical and current hydrology of these wetlands were attributable to consolidation drainage. For each of these wetlands, we digitized water surface areas from aerial photography during historical and current eras. Our results indicated that water surface areas are currently 86% greater in sample wetlands than they were historically and that differences can be attributed to consolidation drainage. Water surface areas of consolidated wetlands in extensively drained landscapes were 197% greater than those with no drainage and now require more extreme drought conditions to dry out. Wetlands in extensively drained catchments were larger, dry out less frequently, and have more surface-water connections to other wetlands via ditches. These factors make conditions more favorable for the presence of fish that decrease abundances of aquatic invertebrates and reduce the productivity and quality of these wetlands for many species. Our results support the idea that intact wetlands serve an important role in water storage and groundwater recharge and reduce down-stream runoff.

Journal ArticleDOI
TL;DR: In this paper, the authors used satellite-derived differenced Normalized Burn Ratio (dNBR) to evaluate fire impacts on ecosystems but the environmental controls on burn severity across large forest fires are both poorly understood and likely to be different than those influencing fire extent.
Abstract: Burn severity as inferred from satellite-derived differenced Normalized Burn Ratio (dNBR) is useful for evaluating fire impacts on ecosystems but the environmental controls on burn severity across large forest fires are both poorly understood and likely to be different than those influencing fire extent. We related dNBR to environmental variables including vegetation, topography, fire danger indices, and daily weather for daily areas burned on 42 large forest fires in central Idaho and western Montana. The 353 fire days we analyzed burned 111,200 ha as part of large fires in 2005, 2006, 2007, and 2011. We expected that local “bottom-up” variables like topography and vegetation would influence burn severity, but that our use of daily dNBR and weather data would uncover stronger relationships between the two than previous studies have shown. We found that percent existing vegetation cover had the largest influence on burn severity, while weather variables like fine fuel moisture, relative humidity, and wind...

Journal ArticleDOI
TL;DR: Results from this study support the concept that top-down effects can be strong divers of prey populations and influence community structure in highly diverse systems, and reinforce the importance of preserving and restoring top- down trophic interactions in ecological systems.
Abstract: The importance of top-down effects in structuring ecological communities has been widely debated by ecologists. One way in which to examine these processes is to study the secondary effects of predator removal on communities. This study examined the role of predatory fishes in structuring communities of coral reef fishes, by using a network of marine reserves (the Great Barrier Reef Marine Park) as a natural experiment. We hypothesized that reefs with high densities of piscivores (marine reserves) would have distinct fish communities from those where piscivores have been depleted through fishing, due to variation in predation pressure. We predicted that predator depletion would result in "prey release", and a corresponding increase in prey densities along a gradient of fishing intensity, causing a change in the community composition of reef fishes. To address this, fish counts and habitat surveys were conducted at four locations on the Great Barrier Reef. At each location, comparisons were made amongst three marine park zones that varied in their exposure to fishing practices; no- take marine reserves, limited fishing areas, and open fishing areas. The density and biomass of predators varied consistently among zones at each location. Furthermore, we found strong evidence for prey release at all four locations, resulting in distinct fish assemblages amongst zones. Reefs open to fishing had much lower densities of piscivores, and higher densities of prey and herbivorous fishes compared to marine reserves. This broad pattern was consistent amongst locations, and persisted at the level of species, trophic groups, families and communities. Habitat characteristics did not vary significantly amongst zones in a consistent manner amongst locations. Although habitat relationships were strong for specialist species such as butterflyfishes, densities of predators were stronger predictors of prey density for most species, and the trophic composition of reef fish communities differed significantly amongst zones at all locations. Results from this study support the concept that top-down effects can be strong divers of prey populations and influence community structure in highly diverse systems. These data emphasize the vital role of predators, and reinforce the importance of preserving and restoring top-down trophic interactions in ecological systems.

Journal ArticleDOI
TL;DR: In this article, the authors analyzed indicators of production of three hydrologic services (freshwater supply, surface and ground water quality) in 100 subwatersheds in an urbanizing agricultural landscape (Yahara Watershed, Wisconsin, USA).
Abstract: The sustainability of hydrologic ecosystem services (freshwater benefits to people generated by terrestrial ecosystems) is challenged by human modification of landscapes. However, the role of landscape heterogeneity in sustaining hydrologic services at scales relevant to landscape management decisions is poorly understood. In particular, the relative importance of landscape composition (type and proportion of land cover) and configuration (spatial arrangement of cover types) is unclear. We analyzed indicators of production of three hydrologic services (freshwater supply, surface and ground water quality) in 100 subwatersheds in an urbanizing agricultural landscape (Yahara Watershed, Wisconsin, USA) and asked: (1) How do landscape composition and configuration affect supply of hydrologic services (i.e., does spatial pattern matter)? (2) Are there opportunities for small changes in landscape pattern to produce large gains in hydrologic services? Landscape composition and configuration both affected supply of hydrologic services, but composition was consistently more important than configuration for all three services. Together landscape composition and configuration explained more variation in indicators of surface-water quality than in freshwater supply or groundwater quality (Nagelkerke/adjusted R2: 86%, 64%, and 39%, respectively). Surface-water quality was negatively correlated with percent cropland and positively correlated with percent forest, grassland and wetland. In addition, surface-water quality was greater in subwatersheds with higher wetland patch density, disaggregated forest patches and lower contagion. Surface-water quality responded nonlinearly to percent cropland and wetland, with greater water quality where cropland covered below 60% and/or wetland above 6% of the subwatershed. Freshwater supply was negatively correlated with percent wetland and urban cover, and positively correlated with urban edge density. Groundwater quality was negatively correlated with percent cropland and grassland, and configuration variables were unimportant. Collectively, our study suggests that altering spatial arrangement of land cover will not be sufficient to enhance hydrologic services in an agricultural landscape. Rather, the relative abundance of land cover may need to change to improve hydrologic services. Targeting subwatersheds near the cropland or wetland thresholds may offer local opportunities to enhance surface-water quality with minimal land-cover change.

Journal ArticleDOI
TL;DR: This work tested the concept of inoculation of plants with arbuscular mycorrhizal fungi with a locally adapted AMF mix cultured from native prairie, a non-locally adapted commercial AMF product, or a sterilized background soil control using four mid- to late successional prairie plant species.
Abstract: Soil microbial communities contribute to ecosystem function and structure plant communities, but are altered by anthropogenic disturbance. Successful restoration may require microbial community restoration. Inoculation of plants with arbuscular mycorrhizal fungi (AMF) may improve ecological restoration, but AMF species that are locally adapted to native plant communities are often unavailable and commercially propagated AMF are not necessarily locally adapted to the desired plant community target. The disconnect between readily available commercial fungi and later-successional plants may inhibit successful establishment of the restoration. We tested this concept using four mid- to late successional prairie plant species planted with one of three inoculum sources: a locally adapted AMF mix cultured from native prairie, a non-locally adapted commercial AMF product, or a sterilized background soil control. The inoculated plants (termed nurse plants) were planted in the middle of field plots. In each plot, un...

Journal ArticleDOI
TL;DR: This article investigated the thermal ecology of a gallinaceous bird species (northern bobwhite; Colinus virginianus, hereafter bobwhite) during a key life history period, focusing on the brood-rearing period of precocial bobwhite chicks associated with brood-attending adults.
Abstract: Recently, gaining knowledge about thermal refuges for vulnerable species has been a major focal point of ecological studies, and this focus has been heightened by predicted temperature increases associated with global climate change. To better understand how organisms respond to thermal landscapes and extremes, we investigated the thermal ecology of a gallinaceous bird species (northern bobwhite; Colinus virginianus, hereafter bobwhite) during a key life history period. Specifically, our study focused on the brood-rearing period of precocial bobwhite chicks associated with brood-attending adults. We measured site-specific black bulb temperatures (Tbb) and vegetation characteristics across 38 brood tracking days and 68 random landscape sites to assess thermal patterns at scales relevant to broods. We observed that the landscape was thermally heterogeneous, exhibiting variation in Tbb up to 40°C during peak diurnal heating demonstrating a wide array of thermal choices available to broods. At 15:00 h, broods...

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate a methodology using frequency domain reflectometry (FDR) to make continuous, direct measurements of wood water content in two hardwood species in a forest in Michigan.
Abstract: Hydraulic capacitance and water storage form a critical buffer against cavitation and loss of conductivity within the xylem system. Withdrawal from water storage in leaves, branches, stems, and roots significantly impacts sap flow, stomatal conductance, and transpiration. Storage quantities differ based on soil water availability, tree size, wood anatomy and density, drought tolerance, and hydraulic strategy (anisohydric or isohydric). However, the majority of studies focus on the measurement of storage in conifers or tropical tree species. We demonstrate a novel methodology using frequency domain reflectometry (FDR) to make continuous, direct measurements of wood water content in two hardwood species in a forest in Michigan. We present results of a two month study comparing the water storage dynamics between a mature red oak and red maple, two species with differing wood densities, hydraulic architecture, and hydraulic strategy. We also include results pertaining to the use of different probe lengths to ...

Journal ArticleDOI
TL;DR: Mcauley et al. as mentioned in this paper evaluated whether carbon stable isotopes (δ13C) can be used as tracers for determining whether H. amphibius-vectored allochthonous material is utilized by aquatic consumers.
Abstract: © 2015 McCauley et al. The common hippopotamus, Hippopotamus amphibius, transports millions of tons of organic matter annually from its terrestrial feeding grounds into aquatic habitats. We evaluated whether carbon stable isotopes (δ13C) can be used as tracers for determining whether H. amphibius-vectored allochthonous material is utilized by aquatic consumers. Two approaches were employed to make this determination: (1) lab-based feeding trials where omnivorous river fish were fed a H. amphibius dung diet and (2) field sampling of fish and aquatic insects in pools with and without H. amphibius. Lab trials revealed that fish fed exclusively H. amphibius dung exhibited significantly more positive δ13C values than fish not fed dung. Fish and aquatic insects sampled in a river pool used for decades by H. amphibius also exhibited more positive δ13C values at the end of the dry season than fish and insects sampled from an upstream H. amphibius-free reference pool. Fish sampled in these same pools at the end of the wet season (high flow) showed no significant differences in δ13C values, suggesting that higher flows reduced retention and use of H. amphibius subsidies. These data provide preliminary evidence that δ13C values may be useful, in certain contexts, for quantifying the importance H. amphibius organic matter.

Journal ArticleDOI
TL;DR: This work synthesizes three lines of research, to underline the mechanisms driving these patterns and create a conceptual model for recursive movement behavior across species and spatio-temporal scales.
Abstract: Recursive movement—returns to previously visited areas—is a widespread phenomenon exhibited by a large range of species from bees and birds to primates and large felines, at different spatial scales. Nevertheless, the wide scope and generality of this phenomenon remain underestimated by the scientific community. This limited appreciation for the pervasiveness of recursive movement can be attributed to its study by parallel lines of research, with different methodologies and nomenclature, and almost no cross referencing among them. Among these lines of studies are traplining behavior in foraging ecology, path recursions in movement ecology and the ecology of fear in predator–prey studies. We synthesize these three lines of research, to underline the mechanisms driving these patterns and create a conceptual model for recursive movement behavior across species and spatio-temporal scales. The emergence and complexity of recursive movement patterns are determined by the rate of resource recovery, environmental...

Journal ArticleDOI
TL;DR: A fatty acid-based mixing model approach is a promising tool for estimating the phytoplankton community composition, while also providing information on the nutritional quality of the seston for consumers.
Abstract: The taxon specificity of fatty acid composition in algal classes suggests that fatty acids could be used as chemotaxonomic markers for phytoplankton composition. The applicability of phospholipid-derived fatty acids as chemotaxonomic markers for phytoplankton composition was evaluated by using a Bayesian fatty acid-based mixing model. Fatty acid profiles from monocultures of chlorophytes, cyanobacteria, diatoms, euglenoids, dinoflagellates, raphidophyte, cryptophytes and chrysophytes were used as a reference library to infer phytoplankton community composition in five moderately humic, large boreal lakes in three different seasons (spring, summer and fall). The phytoplankton community composition was also estimated from microscopic counts. Both methods identified diatoms and cryptophytes as the major phytoplankton groups in the study lakes throughout the sampling period, together accounting for 54-63% of the phytoplankton. In addition, both methods revealed that the proportion of chlorophytes and cyanobacteria was lowest in the spring and increased towards the summer and fall, while dinoflagellates peaked in the spring. The proportion of euglenoids and raphidophytes was less than 8% of the phytoplankton biomass throughout the sampling period. The model estimated significantly lower proportions of chrysophytes in the seston than indicated by microscopic analyses. This is probably because the reference library for chrysophytes included too few taxa. Our results show that a fatty acid-based mixing model approach is a promising tool for estimating the phytoplankton community composition, while also providing information on the nutritional quality of the seston for consumers. Both the quantity and the quality of seston as a food source for zooplankton were high in the spring; total phytoplankton biomass was ;56 l gCL � 1 , and the physiologically important polyunsaturated fatty acids 20:5n-3 and 22:6n-3 comprised ;22% of fatty acids.

Journal ArticleDOI
TL;DR: A female gray whale bioenergetics model is created to determine energy requirements for a two-year reproductive cycle and determines the cons of increased adult mortality.
Abstract: While sophisticated tools are used to monitor behavioral changes of large marine vertebrates, determining whether these changes are meaningful for management and conservation is challenging. The Population Consequences of Disturbance model proposed a bioenergetics model to detect biologically meaningful population responses, where disturbance costs are linked to lost energy. The model assumes that changes in behavior, caused by disturbance, compromise maternal condition, reducing energy delivery to offspring, leading to reduced reproduction, increased offspring mortality, and eventually increased adult mortality. Given its coastal habits and past whaling history, gray whales' (Eschrichtius robustus) life history and ecology are better known than for many other baleen whales. However, their preference for coastal habitat increases their exposure to human disturbance. We created a female gray whale bioenergetics model to determine energy requirements for a two-year reproductive cycle and determined the cons...

Journal ArticleDOI
TL;DR: A novel food-web analysis in a grazing experiment is provided to provide a mechanistic understanding of the long-term, cascading impacts of livestock grazing on plant and arthropod biomass and breeding bird territories.
Abstract: Livestock grazing is a major driver of land-use change, causing significant biodiversity loss globally. Although the short-term effects of livestock grazing on individual species are well studied, a mechanistic understanding of the long-term, cascading impacts is lacking. We manipulated livestock densities using a unique, replicated upland experiment over a 10-year period and found significant effects of grazing treatment on plant and arthropod biomass; the number of Anthus pratensis breeding bird territories; the amplitude of Microtus agrestis population cycles and the activity of a top predator, Vulpes vulpes. Lower plant biomass as a result of higher stocking densities led to cascades across trophic levels, with fewer arthropods and small mammals, the latter affecting predator activity. Breeding bird territories were a function of arthropod abundance and vegetation structure heterogeneity. Our results provide a novel food-web analysis in a grazing experiment to provide a mechanistic understanding of ho...

Journal ArticleDOI
TL;DR: In this article, the authors studied black bears in the urban area of Aspen, Colorado, USA from 2007 to 2010 to quantify bear foraging on natural and anthropogenic resources at fine scales.
Abstract: Urban environments offer wildlife novel anthropogenic resources that vary spatiotemporally at fine scales. Property damage, economic losses, human injury, or other human-wildlife conflicts can occur when wildlife use these resources; however, few studies have examined urban wildlife resource selection at fine scales to guide conflict mitigation. We studied black bears (Ursus americanus) in the urban area of Aspen, Colorado, USA from 2007 to 2010 to quantify bear foraging on natural and...

Journal ArticleDOI
TL;DR: An R software package is written that implements several of the most popular methods for flux estimation, including regressions, interpolations, and the special case of interpolation known as the period-weighted approach, and also implements a lesser-known and empirically promising approach called the “composite method,” to which an algorithm for estimating prediction uncertainty is added.
Abstract: Many ecological insights into the function of rivers and watersheds emerge from quantifying the flux of solutes or suspended materials in rivers. Numerous methods for flux estimation have been described, and each has its strengths and weaknesses. Currently, the largest practical challenges in flux estimation are to select among these methods and to implement or apply whichever method is chosen. To ease this process of method selection and application, we have written an R software package called loadflex that implements several of the most popular methods for flux estimation, including regressions, interpolations, and the special case of interpolation known as the period-weighted approach. Our package also implements a lesser-known and empirically promising approach called the “composite method,” to which we have added an algorithm for estimating prediction uncertainty. Here we describe the structure and key features of loadflex, with a special emphasis on the rationale and details of our composite method...