scispace - formally typeset
Open AccessJournal ArticleDOI

A Review of Relational Machine Learning for Knowledge Graphs

Reads0
Chats0
TLDR
This paper provides a review of how statistical models can be “trained” on large knowledge graphs, and then used to predict new facts about the world (which is equivalent to predicting new edges in the graph) and how such statistical models of graphs can be combined with text-based information extraction methods for automatically constructing knowledge graphs from the Web.
Abstract
Relational machine learning studies methods for the statistical analysis of relational, or graph-structured, data. In this paper, we provide a review of how such statistical models can be “trained” on large knowledge graphs, and then used to predict new facts about the world (which is equivalent to predicting new edges in the graph). In particular, we discuss two fundamentally different kinds of statistical relational models, both of which can scale to massive data sets. The first is based on latent feature models such as tensor factorization and multiway neural networks. The second is based on mining observable patterns in the graph. We also show how to combine these latent and observable models to get improved modeling power at decreased computational cost. Finally, we discuss how such statistical models of graphs can be combined with text-based information extraction methods for automatically constructing knowledge graphs from the Web. To this end, we also discuss Google's knowledge vault project as an example of such combination.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI

Neural Collaborative Filtering

TL;DR: This work strives to develop techniques based on neural networks to tackle the key problem in recommendation --- collaborative filtering --- on the basis of implicit feedback, and presents a general framework named NCF, short for Neural network-based Collaborative Filtering.
Journal ArticleDOI

Knowledge Graph Embedding: A Survey of Approaches and Applications

TL;DR: This article provides a systematic review of existing techniques of Knowledge graph embedding, including not only the state-of-the-arts but also those with latest trends, based on the type of information used in the embedding task.
Proceedings ArticleDOI

Knowledge Graph Embedding via Dynamic Mapping Matrix

TL;DR: A more fine-grained model named TransD, which is an improvement of TransR/CTransR, which not only considers the diversity of relations, but also entities, which makes it can be applied on large scale graphs.
Journal Article

Representation Learning on Graphs: Methods and Applications

TL;DR: A conceptual review of key advancements in this area of representation learning on graphs, including matrix factorization-based methods, random-walk based algorithms, and graph neural networks are provided.
Proceedings Article

Complex embeddings for simple link prediction

TL;DR: This work makes use of complex valued embeddings to solve the link prediction problem through latent factorization, and uses the Hermitian dot product, the complex counterpart of the standard dot product between real vectors.
References
More filters
Journal ArticleDOI

Emergence of Scaling in Random Networks

TL;DR: A model based on these two ingredients reproduces the observed stationary scale-free distributions, which indicates that the development of large networks is governed by robust self-organizing phenomena that go beyond the particulars of the individual systems.
Posted Content

Efficient Estimation of Word Representations in Vector Space

TL;DR: This paper proposed two novel model architectures for computing continuous vector representations of words from very large data sets, and the quality of these representations is measured in a word similarity task and the results are compared to the previously best performing techniques based on different types of neural networks.
Journal ArticleDOI

WordNet: a lexical database for English

TL;DR: WordNet1 provides a more effective combination of traditional lexicographic information and modern computing, and is an online lexical database designed for use under program control.
Journal ArticleDOI

The anatomy of a large-scale hypertextual Web search engine

TL;DR: This paper provides an in-depth description of Google, a prototype of a large-scale search engine which makes heavy use of the structure present in hypertext and looks at the problem of how to effectively deal with uncontrolled hypertext collections where anyone can publish anything they want.
Journal Article

The Anatomy of a Large-Scale Hypertextual Web Search Engine.

Sergey Brin, +1 more
- 01 Jan 1998 - 
TL;DR: Google as discussed by the authors is a prototype of a large-scale search engine which makes heavy use of the structure present in hypertext and is designed to crawl and index the Web efficiently and produce much more satisfying search results than existing systems.
Related Papers (5)