scispace - formally typeset
Journal ArticleDOI

A Sea of Change: Biogeochemical Variability in the North Pacific Subtropical Gyre

David M. Karl
- 01 May 1999 - 
- Vol. 2, Iss: 3, pp 181-214
Reads0
Chats0
TLDR
The North Pacific Subtropical Gyre (NPSG) is the largest ecosystem on our planet as mentioned in this paper, however, this expansive habitat is also remote, poorly sampled, and therefore not well understood.
Abstract
The North Pacific Subtropical Gyre (NPSG) is the largest ecosystem on our planet. However, this expansive habitat is also remote, poorly sampled, and therefore not well understood. For example, the most abundant oxygenic phototroph in the NPSG, Prochlorococcus, was described only a decade ago. Other novel Bacteria, Archaea and Eukarya, recently identified by nucleic acid sequence analysis, have not been isolated. In October 1988, an ocean time-series research program was established to study ecosystem processes in the gyre, including rates and pathways of carbon and energy flow, spatial and temporal scales of variability, and coupling of ocean physics to biogeochemical processes. After a decade of ecosystem surveillance, this sentinel observatory has produced an unprecedented data set and some new views of an old ocean. Foremost is evidence for dramatic changes in microbial community structure and in mechanisms of nutrient cycling in response to large-scale ocean–atmosphere interactions. These and other observations demand reassessment of current views of physical-biogeochemical processes in this and other open-ocean ecosystems.

read more

Citations
More filters
Journal ArticleDOI

Nitrogen cycles: past, present, and future

TL;DR: In this paper, the authors compared the natural and anthropogenic controls on the conversion of unreactive N2 to more reactive forms of nitrogen (Nr) and found that human activities increasingly dominate the N budget at the global and at most regional scales, and the terrestrial and open ocean N budgets are essentially dis-connected.
Book

The Ecology of Phytoplankton

TL;DR: Reynolds as discussed by the authors provides basic information on composition, morphology and physiology of the main phyletic groups represented in marine and freshwater systems and reviews recent advances in community ecology, developing an appreciation of assembly processes, co-existence and competition, disturbance and diversity.
References
More filters
Journal ArticleDOI

A Pacific interdecadal climate oscillation with impacts on salmon production

TL;DR: In this article, the authors identify a robust, recurring pattern of ocean-atmosphere climate variability centered over the midlatitude North Pacific basin over the past century, the amplitude of this climate pattern has varied irregularly at interannual-to-interdecadal timescales.
Journal ArticleDOI

The Ecological Role of Water-Column Microbes in the Sea*

TL;DR: Evidence is presented to suggest that numbers of free bacteria are controlled by nanoplankton~c heterotrophic flagellates which are ubiquitous in the marine water column, thus providing the means for returning some energy from the 'microbial loop' to the conventional planktonic food chain.

UseofNuclepore Filters forCounting Bacteria by Fluorescence Microscopy

TL;DR: Polycarbonate Nuclepore filters are better than cellulose filters for the direct counting of bacteria because they have uniform pore size and a flat surface that retains all of the bacteria on top of the filter.
Journal ArticleDOI

Use of nuclepore filters for counting bacteria by fluorescence microscopy.

TL;DR: Polycarbonate Nuclepore filters are better than cellulose filters for the direct counting of bacteria because they have uniform pore size and a flat surface that retains all of the bacteria on top of the filter.
Related Papers (5)