scispace - formally typeset
Journal ArticleDOI

A Self-Template Strategy for the Synthesis of Mesoporous Carbon Nanofibers as Advanced Supercapacitor Electrodes

About
This article is published in Advanced Energy Materials.The article was published on 2011-05-01. It has received 349 citations till now. The article focuses on the topics: Carbon nanofiber & Nanofiber.

read more

Citations
More filters
Journal ArticleDOI

Electrochemical capacitors: mechanism, materials, systems, characterization and applications

TL;DR: The latest progress in supercapacitors in charge storage mechanisms, electrode materials, electrolyte materials, systems, characterization methods, and applications are reviewed and the newly developed charge storage mechanism for intercalative pseudocapacitive behaviour is clarified for comparison.
Journal ArticleDOI

Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors

TL;DR: In this paper, a functionalized three-dimensional hierarchical porous carbon (THPC) is prepared via a facile modified chemical activation route with polypyrrole microsheets as precursor and KOH as activating agent.
Journal ArticleDOI

Development of MOF-Derived Carbon-Based Nanomaterials for Efficient Catalysis

TL;DR: In this article, the newly emerging metal-organic frameworks (MOFs) built from metal ions and polyfunctional organic ligands have proved to be promising self-sacrificing templates and precursors for preparing various carbon-based nanomaterials, benefiting from their high surface areas, abundant metal/organic species, large pore volumes, and extraordinary tunability of structures and compositions.
Journal ArticleDOI

Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities

TL;DR: A critical review of the factors influencing the volumetric performance of carbon materials from a structural design point of view and an in-depth summary of various promising approaches used to make significant research breakthroughs in recent years.
Journal ArticleDOI

Mesoporous materials for energy conversion and storage devices

TL;DR: A review of mesoporous materials can be found in this paper, where the authors summarize the primary methods for preparing mesopore materials and discuss their applications as electrodes and/or catalysts in solar cells, solar fuel production, rechargeable batteries, supercapacitors and fuel cells.
References
More filters
Journal ArticleDOI

Materials for electrochemical capacitors

TL;DR: This work has shown that combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries.
Journal ArticleDOI

Carbon-based materials as supercapacitor electrodes

TL;DR: This tutorial review provides a brief summary of recent research progress on carbon-based electrode materials forsupercapacitors, as well as the importance of electrolytes in the development of supercapacitor technology.
Journal ArticleDOI

Advanced Materials for Energy Storage

TL;DR: This Review introduces several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage, and the current status of high-performance hydrogen storage materials for on-board applications and electrochemicals for lithium-ion batteries and supercapacitors.
Journal ArticleDOI

Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer

TL;DR: The results challenge the long-held axiom that pores smaller than the size of solvated electrolyte ions are incapable of contributing to charge storage.
Journal ArticleDOI

3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage

TL;DR: This paper presents a probabilistic analysis of the response of the immune system to natural disasters to the presence of carbon dioxide in the air and shows clear patterns of decline over time.
Related Papers (5)