scispace - formally typeset
Journal ArticleDOI

An atomic-resolution atomic-force microscope implemented using an optical lever

TLDR
In this paper, the first atomic-resolution image of a surface obtained with an optical implementation of the atomic force microscope (AFM) was presented, where the native oxide on silicon was imaged with atomic resolution, and ≊5nm resolution images of aluminum, mechanically ground iron, and corroded stainless steel were obtained.
Abstract
We present the first atomic‐resolution image of a surface obtained with an optical implementation of the atomic‐force microscope (AFM). The native oxide on silicon was imaged with atomic resolution, and ≊5‐nm resolution images of aluminum, mechanically ground iron, and corroded stainless steel were obtained. The relative merits of an optical implementation of the AFM as opposed to a tunneling implementation are discussed.

read more

Citations
More filters
Journal ArticleDOI

Force measurements with the atomic force microscope: Technique, interpretation and applications

TL;DR: The atomic force microscope (AFM) is not only used to image the topography of solid surfaces at high resolution but also to measure force-versus-distance curves as discussed by the authors, which provide valuable information on local material properties such as elasticity, hardness, Hamaker constant, adhesion and surface charge densities.
Journal ArticleDOI

A Survey of Control Issues in Nanopositioning

TL;DR: This paper presents an overview of nanopositioning technologies and devices emphasizing the key role of advanced control techniques in improving precision, accuracy, and speed of operation of these systems.
Journal ArticleDOI

Scratching the Surface: Fundamental Investigations of Tribology with Atomic Force Microscopy.

TL;DR: The goal of this paper is to demonstrate that AFM is capable of producing atomic-scale knowledge, and to focus upon some of the contributions of the AFM to nanotribology.
Journal ArticleDOI

Imaging crystals, polymers, and processes in water with the atomic force microscope.

TL;DR: Images of mica demonstrate that atomic resolution is possible on rigid materials, thus opening the possibility of atomic-scale corrosion experiments on nonconductors and showing the potential of the AFM for revealing the structure of molecules important in biology and medicine.
Journal ArticleDOI

Review: Semiconductor Piezoresistance for Microsystems

TL;DR: This paper provides a comprehensive overview of integrated piezoresistor technology with an introduction to the physics of Piezoresistivity, process and material selection and design guidance useful to researchers and device engineers.
References
More filters
Journal ArticleDOI

Atomic force microscope

TL;DR: The atomic force microscope as mentioned in this paper is a combination of the principles of the scanning tunneling microscope and the stylus profilometer, which was proposed as a method to measure forces as small as 10-18 N. As one application for this concept, they introduce a new type of microscope capable of investigating surfaces of insulators on an atomic scale.
Journal ArticleDOI

Surface studies by scanning tunneling microscopy

TL;DR: In this paper, surface microscopy using vacuum tunneling has been demonstrated for the first time, and topographic pictures of surfaces on an atomic scale have been obtained for CaIrSn 4 and Au.
Journal ArticleDOI

Atomic force microscope–force mapping and profiling on a sub 100‐Å scale

TL;DR: In this paper, a modified version of the atomic force microscope is introduced that enables a precise measurement of the force between a tip and a sample over a tip-sample distance range of 30-150 A.
Journal ArticleDOI

Novel optical approach to atomic force microscopy

TL;DR: In this article, a simple optical method for detecting the cantilever deflection in atomic force microscopy is described, and the method is incorporated in an atomic force microscope, and imaging and force measurements, in ultrahigh vacuum, are successfully performed.
Journal ArticleDOI

Magnetic imaging by ‘‘force microscopy’’ with 1000 Å resolution

TL;DR: In this article, a force microscope is used to measure the magnetic force between a magnetized tip and the scanned surface, which shows promise for the high-resolution mapping of both static and dynamic magnetic fields.
Related Papers (5)