scispace - formally typeset
Open AccessJournal ArticleDOI

An ultrapotent synthetic nanobody neutralizes SARS-CoV-2 by stabilizing inactive Spike

TLDR
Nanobodies that bind tightly to spike and efficiently neutralize SARS-CoV-2 in cells are reported, which enables aerosol-mediated delivery of this potent neutralizer directly to the airway epithelia.
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus enters host cells via an interaction between its Spike protein and the host cell receptor angiotensin-converting enzyme 2 (ACE2). By screening a yeast surface-displayed library of synthetic nanobody sequences, we developed nanobodies that disrupt the interaction between Spike and ACE2. Cryo-electron microscopy (cryo-EM) revealed that one nanobody, Nb6, binds Spike in a fully inactive conformation with its receptor binding domains locked into their inaccessible down state, incapable of binding ACE2. Affinity maturation and structure-guided design of multivalency yielded a trivalent nanobody, mNb6-tri, with femtomolar affinity for Spike and picomolar neutralization of SARS-CoV-2 infection. mNb6-tri retains function after aerosolization, lyophilization, and heat treatment, which enables aerosol-mediated delivery of this potent neutralizer directly to the airway epithelia.

read more

Citations
More filters
Journal ArticleDOI

Production and Crystallization of Nanobodies in Complex with the Receptor Binding Domain of the SARS-CoV-2 Spike Protein.

TL;DR: The receptor binding domain (RBD) of the spike protein of SARS-CoV-2 binds angiotensin converting enzyme-2 (ACE-2) on the surface of epithelial cells, leading to fusion, and entry of the virus into the cell, which can be blocked by the binding of llama-derived nanobodies (VHHs), leading to virus neutralisation.
Journal ArticleDOI

General Trends of the Camelidae Antibody VHHs Domain Dynamics

Abstract: Conformational flexibility plays an essential role in antibodies’ functional and structural stability. They facilitate and determine the strength of antigen–antibody interactions. Camelidae express an interesting subtype of single-chain antibody, named Heavy Chain only Antibody. They have only one N-terminal Variable domain (VHH) per chain, composed of Frameworks (FRs) and Complementarity Determining regions (CDRs) like their VH and VL counterparts in IgG. Even when expressed independently, VHH domains display excellent solubility and (thermo)stability, which helps them to retain their impressive interaction capabilities. Sequence and structural features of VHH domains contributing to these abilities have already been studied compared to classical antibodies. To have the broadest view and understand the changes in dynamics of these macromolecules, large-scale molecular dynamics simulations for a large number of non-redundant VHH structures have been performed for the first time. This analysis reveals the most prevalent movements in these domains. It reveals the four main classes of VHHs dynamics. Diverse local changes were observed in CDRs with various intensities. Similarly, different types of constraints were observed in CDRs, while FRs close to CDRs were sometimes primarily impacted. This study sheds light on the changes in flexibility in different regions of VHH that may impact their in silico design.
Posted ContentDOI

A Novel Regioselective Approach to Cyclize Phage-Displayed Peptides in Combination with Epitope-Directed Selection to Identify a Potent Neutralizing Macrocyclic Peptide for SARS-CoV-2

TL;DR: In this article , a phage-displayed macrocyclic 12-mer peptide library was constructed and subsequently validated using the regioselective cyanobenzothiazole condensation reaction with the N -terminal cysteine and the chloroacetamide reaction with an internal cystine, using this library in combination with iterative selections against two epitopes from the receptor binding domain (RBD) of the SARS-CoV-2 Spike protein.
Journal ArticleDOI

Integrative structural studies of the SARS-CoV-2 spike protein during the fusion process (2022)

TL;DR: In this article , the structure of the spike protein at different stages of the fusion process of SARS-CoV-2 has been studied and sites along the transition pathways have been proposed as potential targets for drug development.
Journal ArticleDOI

A nanobody-based complement inhibitor targeting complement component 2 reduces hemolysis in a complement humanized mouse model of autoimmune hemolytic anemia.

TL;DR: Nab1B10 as discussed by the authors is a new anti-C2 nanobody that potently and selectively inhibits both the classical and lectin pathways of complement activation, which is an attractive therapeutic target for many complement-mediated diseases.
References
More filters
Journal ArticleDOI

Coot: model-building tools for molecular graphics.

TL;DR: CCP4mg is a project that aims to provide a general-purpose tool for structural biologists, providing tools for X-ray structure solution, structure comparison and analysis, and publication-quality graphics.
Journal ArticleDOI

A Novel Coronavirus from Patients with Pneumonia in China, 2019.

TL;DR: Human airway epithelial cells were used to isolate a novel coronavirus, named 2019-nCoV, which formed a clade within the subgenus sarbecovirus, Orthocoronavirinae subfamily, which is the seventh member of the family of coronaviruses that infect humans.
Journal ArticleDOI

Phaser crystallographic software

TL;DR: A description is given of Phaser-2.1: software for phasing macromolecular crystal structures by molecular replacement and single-wavelength anomalous dispersion phasing.
Related Papers (5)