scispace - formally typeset
Journal ArticleDOI

Anomalous thermal conductivity enhancement in nanotube suspensions

Stephen U. S. Choi, +4 more
- 24 Sep 2001 - 
- Vol. 79, Iss: 14, pp 2252-2254
Reads0
Chats0
TLDR
In this paper, the authors have produced nanotube-in-oil suspensions and measured their effective thermal conductivity, which is anomalously greater than theoretical predictions and is nonlinear with nanotubes loadings.
Abstract
We have produced nanotube-in-oil suspensions and measured their effective thermal conductivity. The measured thermal conductivity is anomalously greater than theoretical predictions and is nonlinear with nanotube loadings. The anomalous phenomena show the fundamental limits of conventional heat conduction models for solid/liquid suspensions. We have suggested physical concepts for understanding the anomalous thermal behavior of nanotube suspensions. In comparison with other nanostructured materials dispersed in fluids, the nanotubes provide the highest thermal conductivity enhancement, opening the door to a wide range of nanotube applications.

read more

Citations
More filters
Journal ArticleDOI

Measurement of the specific heat capacity of water-based Al2O3 nanofluid

TL;DR: In this article, the specific heat of water-based Al2O3 nanofluid with a differential scanning calorimeter was investigated and it was shown that the specific temperature decreases gradually as the nanoparticle volume fraction increases from 0.0% to 21.7%.
Journal ArticleDOI

Model for thermal conductivity of carbon nanotube-based composites

TL;DR: Considering the carbon nanotubes orientation distribution, a new model of effective thermal conductivity of CNTs-based composites is presented in this paper, which is valid for the transport properties of the CNT-based composite.
Journal ArticleDOI

Latest developments on the viscosity of nanofluids

TL;DR: In this paper, a detailed review on theoretical models/correlations of conventional models related to nanofluid viscosity is presented, and the existing experimental results about the Nanofluids viscoities show clearly that viscoity augmented accordingly with an increase of volume concentration and decreased with the temperature rise.
Journal ArticleDOI

A review on nanofluids - Part I: Theoretical and numerical investigations

TL;DR: In this article, a review summarizes recent research on theoretical and numerical investigations of various thermal properties and applications of nanofluids, as such suspensions are often called, indicate that the suspended nanoparticles markedly change the transport properties and heat transfer characteristics of the suspension.
Journal ArticleDOI

Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives

TL;DR: In this paper, the thermal conductivities of several nanofluids were consistently greater than the theoretical predictions obtained from existing models, and mechanisms for thermal conductivity enhancement were discussed, where Mono-type nanoparticle suspensions showed the greatest enhancement in thermal conductive, among which the enhancement with CuNPs was the highest.
References
More filters
Journal ArticleDOI

Helical microtubules of graphitic carbon

Sumio Iijima
- 01 Nov 1991 - 
TL;DR: Iijima et al. as mentioned in this paper reported the preparation of a new type of finite carbon structure consisting of needle-like tubes, which were produced using an arc-discharge evaporation method similar to that used for fullerene synthesis.
Book

A Treatise on Electricity and Magnetism

TL;DR: The most influential nineteenth-century scientist for twentieth-century physics, James Clerk Maxwell (1831-1879) demonstrated that electricity, magnetism and light are all manifestations of the same phenomenon: the electromagnetic field as discussed by the authors.
Book

Physical properties of carbon nanotubes

TL;DR: In this paper, an introductory textbook for graduate students and researchers from various fields of science who wish to learn about carbon nanotubes is presented, focusing on the basic principles behind the physical properties and giving the background necessary to understand the recent developments.
Journal ArticleDOI

Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles

TL;DR: In this paper, it was shown that a "nanofluid" consisting of copper nanometer-sized particles dispersed in ethylene glycol has a much higher effective thermal conductivity than either pure or pure glycol or even polyethylene glycol containing the same volume fraction of dispersed oxide nanoparticles.
Related Papers (5)