scispace - formally typeset
Journal ArticleDOI

Antibacterial spectrum of lactoferricin B, a potent bactericidal peptide derived from the N-terminal region of bovine lactoferrin

TLDR
Lactoferricin B was lethal, causing a rapid loss of colony-forming capability in most of the species tested, and Pseudomonas fluorescens, Enterococcus faecalis and Bifidobacterium bifidum strains were highly resistant to this peptide.
Abstract
A physiologically diverse range of Gram-positive and Gram-negative bacteria was found to be susceptible to inhibition and inactivation by lactoferricin B, a peptide produced by gastric pepsin digestion of bovine lactoferrin. The list of susceptible organisms includes Escherichia coli, Salmonella enteritidis, Klebsiella pneumoniae, Proteus vulgaris, Yersinia enterocolitica, Pseudomonas aeruginosa, Campylobacter jejuni, Staphylococcus aureus, Streptococcus mutans, Corynebacterium diphtheriae, Listeria monocytogenes and Clostridium perfringens. Concentrations of lactoferricin B required to cause complete inhibition of growth varied within the range of 0.3 to 150 micrograms/ml, depending on the strain and the culture medium used. The peptide showed activity against E. coli O111 over the range of pH 5.5 to 7.5 and was most effective under slightly alkaline conditions. Its antibacterial effectiveness was reduced in the presence of Na+, K+, Mg2+ or Ca2+ ions, or in the presence of various buffer salts. Lactoferricin B was lethal, causing a rapid loss of colony-forming capability in most of the species tested. Pseudomonas fluorescens, Enterococcus faecalis and Bifidobacterium bifidum strains were highly resistant to this peptide.

read more

Citations
More filters
Journal ArticleDOI

Length Effects in Antimicrobial Peptides of the (RW)n Series

TL;DR: Circular dichroism spectroscopy indicates that these short peptides appear to be unfolded in aqueous solution but acquire structure in the presence of phospholipids, and the (RW)3 represents the optimal chain length in terms of the efficacy of synthesis and selectivity as evaluated by the hemolytic index.
Journal ArticleDOI

Antimicrobial peptides: an alternative for innovative medicines?

TL;DR: This work reviews the available strategies for their synthesis, bioinformatics tools for the rational design of antimicrobial peptides with enhanced therapeutic indices, hurdles and shortcomings limiting the large-scale production of AMPs, as well as the challenges that the pharmaceutical industry faces on their use as therapeutic agents.
Book ChapterDOI

Milk Protein Hydrolysates and Bioactive Peptides

TL;DR: Detailed knowledge of the peptide sequences responsible for the bioactive properties, together with a better understanding of the bioavailability and stability of these peptides in vivo may help to enhance the development of milk protein hydrolysates with health promoting capabilities in humans.
Journal ArticleDOI

Antimicrobial peptides: natural templates for synthetic membrane-active compounds.

TL;DR: Current understanding of the modes of interaction of AMPs with biological and model membranes are reported, especially focusing on recent insights into the folding and oligomerization requirements of peptides to bind and insert into lipid membranes and exert their antibiotic effects.
Journal ArticleDOI

Antibacterial Peptides of Bovine Lactoferrin: Purification and Characterization

TL;DR: The results confirmed and extended those of earlier studies suggesting that the bactericidal domain of lactoferrin was localized in the N-terminus and did not involve iron-binding sites, and displayed antibacterial activity toward a number of pathogenic and food spoilage microorganisms.
References
More filters
Journal ArticleDOI

Identification of the bactericidal domain of lactoferrin.

TL;DR: The studies suggest this domain is the structural region responsible for the bacterial properties of lactoferrin, having effectiveness against various Gram-negative and Gram-positive bacteria at concentrations between 0.3 microM and 3.0 microM, depending on the target strain.
Journal ArticleDOI

All-D amino acid-containing channel-forming antibiotic peptides.

TL;DR: The D enantiomers of three naturally occurring antibiotics--cecropin A, magainin 2 amide, and melittin--were synthesized and it is suggested that the mode of action of these peptides on the membranes of bacteria, erythrocytes, plasmodia, and artificial lipid bilayers may be similar and involves the formation of ion-channel pores spanning the membranes, but without specific interaction with chiral receptors or enzymes.
Journal ArticleDOI

Cell-free immunity in insects.

TL;DR: The authors showed that at least two of the cecropins originate from a gene duplication and that the biosynthesis has been initiated on RNA and tissue levels on both RNA and DNA levels.
Journal ArticleDOI

Killing of gram-negative bacteria by lactoferrin and lysozyme.

TL;DR: Dialysis chamber studies indicate that bacterial killing requires direct contact with lactoferrin, and work with purified LPS suggests that this relates to direct LPS-binding by the protein, suggesting that their interaction contributes to host defense.
Journal ArticleDOI

A bactericidal effect for human lactoferrin

TL;DR: Streptococcus mutans and Vibrio cholerae, but not Escherichia coli, were killed by incubation with purified human apolact oferrin, contingent upon the metal-chelating properties of the lactoferrin molecule.
Related Papers (5)