scispace - formally typeset
Journal ArticleDOI

Approximate atomic surfaces from linear combinations of pairwise overlaps (lcpo)

Reads0
Chats0
TLDR
In this article, a fast analytical formula was derived for the calculation of approximate atomic and molecular van der Waals (vdWSA), and solvent-accessible surface areas (SASAs), as well as the first and second derivatives of these quantities with respect to atomic coordinates.
Abstract
A fast analytical formula was derived for the calculation of approximate atomic and molecular van der Waals (vdWSA), and solvent-accessible surface areas (SASAs), as well as the first and second derivatives of these quantities with respect to atomic coordinates. This method makes use of linear combinations of terms composed from pairwise overlaps of hard spheres; therefore, we term this the LCPO method for linear combination of pairwise overlaps. For higher performance, neighbor-list reduction (NLR) was applied as a preprocessing step. Eighteen compounds of different sizes (8–2366 atoms) and classes (organic, proteins, DNA, and various complexes) were chosen as representative test cases. LCPO/NLR computed the SASA and first derivatives of penicillopepsin, a protein with 2366 atoms, in 0.87 s (0.22 s for the creation of the neighbor list, 0.35 s for NLR, and 0.30 s for SASA and first derivatives) on an SGI R10000/194 Mhz processor. This appears comparable to or better than timings reported previously for other algorithms. The vdWSAs were in good agreement with the numerical results: relative errors for total molecular surface areas ranged from 0.1 to 2.0% and average absolute atomic surface area deviations from 0.3 to 0.7 A2. For SASAs without NLR, the LCPO method exhibited relative errors in the range of 0.4–9.2% for total molecular surface areas and average absolute atomic surface area deviations of 2.0–2.7 A2; with NLR the relative molecular errors ranged from 0.1 to 7.8% and the average absolute atomic surface area deviation from 1.6 to 3.0 A2. ©1999 John Wiley & Sons, Inc. J Comput Chem 20: 217–230, 1999

read more

Citations
More filters
Journal ArticleDOI

The Amber biomolecular simulation programs

TL;DR: The development, current features, and some directions for future development of the Amber package of computer programs, which contains a group of programs embodying a number of powerful tools of modern computational chemistry, focused on molecular dynamics and free energy calculations of proteins, nucleic acids, and carbohydrates.
Journal ArticleDOI

PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data

TL;DR: PTRAJ and its successor CPPTRAJ are described, two complementary, portable, and freely available computer programs for the analysis and processing of time series of three-dimensional atomic positions and the data therein derived.
Journal ArticleDOI

Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations.

TL;DR: An extensive study of 59 ligands interacting with six different proteins finds that MM/PBSA can serve as a powerful tool in drug design, where correct ranking of inhibitors is often emphasized, and the accuracy of the binding free energies calculated by three Generalized Born (GB) models is evaluated.
Journal ArticleDOI

Insights into Protein-Protein Binding by Binding Free Energy Calculation and Free Energy Decomposition for the Ras-Raf and Ras-RalGDS Complexes

TL;DR: This study investigates the capability of the molecular mechanics-generalized Born surface area (GBSA) approach to estimate absolute binding free energies for the protein-protein complexes and finds hotspot residues experience a significantly larger-than-average decrease in local fluctuations upon complex formation.
Journal ArticleDOI

Theory and applications of the generalized Born solvation model in macromolecular simulations.

TL;DR: This work compares results using the GB model (or GB plus a surface‐area based “hydrophobic” term) to explicit solvent simulations for a 10 base‐pair DNA oligomer, and for the 108‐residue protein thioredoxin.
References
More filters
Book

Numerical Recipes in FORTRAN

TL;DR: The Diskette v 2.04, 3.5'' (720k) for IBM PC, PS/2 and compatibles [DOS] Reference Record created on 2004-09-07, modified on 2016-08-08.
Journal ArticleDOI

The Protein Data Bank: a computer-based archival file for macromolecular structures.

TL;DR: The Protein Data Bank is a computer-based archival file for macromolecular structures that stores in a uniform format atomic co-ordinates and partial bond connectivities, as derived from crystallographic studies.
Journal ArticleDOI

The interpretation of protein structures: estimation of static accessibility.

TL;DR: The accessibility of atoms in the twenty common amino acids in model tripeptides of the type Ala-X-Ala are given for defined conformation and the larger non-polar amino acids tend to be more “buried” in the native form of all three proteins.
Journal ArticleDOI

MacroModel—an integrated software system for modeling organic and bioorganic molecules using molecular mechanics

TL;DR: An integrated molecular modeling system for designing and studying organic and bioorganic molecules and their molecular complexes using molecular mechanics is described in this article, which allows the construction, display and manipulation of molecules and complexes having as many as 10,000 atoms and provides interactive, state-of-the-art molecular mechanics on any subset of up to 1000 atoms.
Journal ArticleDOI

Semianalytical treatment of solvation for molecular mechanics and dynamics

TL;DR: In this paper, it was shown that the active carbon incorporation catalyst is carbided iron and this conclusion was well supported by bulk carbon to iron stoichiometries of 0.1-0.25 estimated from the TPHT peak areas which were adequate to represent 40-60'36 conversion to bulk carbides such as Fe,C or FeSC2.
Related Papers (5)