scispace - formally typeset
Open AccessJournal ArticleDOI

Cell adhesion: integrating cytoskeletal dynamics and cellular tension

Reads0
Chats0
TLDR
Adhesion formation and disassembly drive the migration cycle by activating Rho GTPases, which in turn regulate actin polymerization and myosin II activity, and therefore adhesion dynamics.
Abstract
Cell migration affects all morphogenetic processes and contributes to numerous diseases, including cancer and cardiovascular disease. For most cells in most environments, movement begins with protrusion of the cell membrane followed by the formation of new adhesions at the cell front that link the actin cytoskeleton to the substratum, generation of traction forces that move the cell forwards and disassembly of adhesions at the cell rear. Adhesion formation and disassembly drive the migration cycle by activating Rho GTPases, which in turn regulate actin polymerization and myosin II activity, and therefore adhesion dynamics.

read more

Citations
More filters
Journal ArticleDOI

The physics of cancer: the role of physical interactions and mechanical forces in metastasis

TL;DR: The metastatic process is reconstructed and the importance of key physical and mechanical processes at each step of the cascade is described, which may help to solve some long-standing questions in disease progression and lead to new approaches to developing cancer diagnostics and therapies.
Journal ArticleDOI

Forces in Tissue Morphogenesis and Patterning

TL;DR: The interplay between tissue mechanics and biochemical signaling orchestrates tissue morphogenesis and patterning in development.
Journal ArticleDOI

Dynamic molecular processes mediate cellular mechanotransduction

TL;DR: An emerging insight is that transduction of forces into biochemical signals occurs within the context of these processes, which helps explain how forces of varying strengths or dynamic characteristics regulate distinct signalling pathways.
Journal ArticleDOI

Actin stress fibers--assembly, dynamics and biological roles.

Abstract: Actin filaments assemble into diverse protrusive and contractile structures to provide force for a number of vital cellular processes. Stress fibers are contractile actomyosin bundles found in many cultured non-muscle cells, where they have a central role in cell adhesion and morphogenesis. Focal-adhesion-anchored stress fibers also have an important role in mechanotransduction. In animal tissues, stress fibers are especially abundant in endothelial cells, myofibroblasts and epithelial cells. Importantly, recent live-cell imaging studies have provided new information regarding the mechanisms of stress fiber assembly and how their contractility is regulated in cells. In addition, these studies might elucidate the general mechanisms by which contractile actomyosin arrays, including muscle cell myofibrils and cytokinetic contractile ring, can be generated in cells. In this Commentary, we discuss recent findings concerning the physiological roles of stress fibers and the mechanism by which these structures are generated in cells.
Journal ArticleDOI

Transduction of mechanical and cytoskeletal cues by YAP and TAZ

TL;DR: Cues from the extracellular matrix, cell adhesion sites, cell shape and the actomyosin cytoskeleton were found to converge on the regulation of the downstream effectors of the Hippo pathway YAP and TAZ in vertebrates and Yorkie in flies, which may explain how mechanical signals can direct normal and pathological cell behaviour.
References
More filters
Journal ArticleDOI

Integrins: Bidirectional, Allosteric Signaling Machines

TL;DR: Current structural and cell biological data suggest models for how integrins transmit signals between their extracellular ligand binding adhesion sites and their cytoplasmic domains, which link to the cytoskeleton and to signal transduction pathways.
Journal ArticleDOI

Tissue Cells Feel and Respond to the Stiffness of Their Substrate

TL;DR: An understanding of how tissue cells—including fibroblasts, myocytes, neurons, and other cell types—sense matrix stiffness is just emerging with quantitative studies of cells adhering to gels with which elasticity can be tuned to approximate that of tissues.
Journal ArticleDOI

Cell migration: integrating signals from front to back.

TL;DR: The mechanisms underlying the major steps of migration and the signaling pathways that regulate them are described, and recent advances investigating the nature of polarity in migrating cells and the pathways that establish it are outlined.
Journal ArticleDOI

Rho GTPases in cell biology.

TL;DR: Rho GTPases are molecular switches that control a wide variety of signal transduction pathways in all eukaryotic cells and their ability to influence cell polarity, microtubule dynamics, membrane transport pathways and transcription factor activity is probably just as significant.
Journal ArticleDOI

Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia

TL;DR: It is reported here that cdc42, another member of the rho family, triggers the formation of a third type of actin-based structure found at the cell periphery, filopodia, in addition to stress fibers, and rho controls the assembly of focal adhesion complexes.
Related Papers (5)