scispace - formally typeset
Search or ask a question

Showing papers in "Nature Reviews Cancer in 2011"


Journal ArticleDOI
TL;DR: Interest in the topic of tumour metabolism has waxed and waned over the past century, but it has become clear that many of the signalling pathways that are affected by genetic mutations and the tumour microenvironment have a profound effect on core metabolism, making this topic once again one of the most intense areas of research in cancer biology.
Abstract: Interest in the topic of tumour metabolism has waxed and waned over the past century of cancer research. The early observations of Warburg and his contemporaries established that there are fundamental differences in the central metabolic pathways operating in malignant tissue. However, the initial hypotheses that were based on these observations proved inadequate to explain tumorigenesis, and the oncogene revolution pushed tumour metabolism to the margins of cancer research. In recent years, interest has been renewed as it has become clear that many of the signalling pathways that are affected by genetic mutations and the tumour microenvironment have a profound effect on core metabolism, making this topic once again one of the most intense areas of research in cancer biology.

4,169 citations


Journal ArticleDOI
TL;DR: The two main approaches, namely bioreductive prodrugs and inhibitors of molecular targets upon which hypoxic cell survival depends are reviewed, and the particular challenges and opportunities these overlapping strategies present are addressed.
Abstract: Hypoxia is a feature of most tumours, albeit with variable incidence and severity within a given patient population. It is a negative prognostic and predictive factor owing to its multiple contributions to chemoresistance, radioresistance, angiogenesis, vasculogenesis, invasiveness, metastasis, resistance to cell death, altered metabolism and genomic instability. Given its central role in tumour progression and resistance to therapy, tumour hypoxia might well be considered the best validated target that has yet to be exploited in oncology. However, despite an explosion of information on hypoxia, there are still major questions to be addressed if the long-standing goal of exploiting tumour hypoxia is to be realized. Here, we review the two main approaches, namely bioreductive prodrugs and inhibitors of molecular targets upon which hypoxic cell survival depends. We address the particular challenges and opportunities these overlapping strategies present, and discuss the central importance of emerging diagnostic tools for patient stratification in targeting hypoxia.

2,570 citations


Journal ArticleDOI
TL;DR: Next-generation sequencing is providing a window for visualizing the human epigenome and how it is altered in cancer, including linking epigenetic abnormalities to mutations in genes that control DNA methylation, the packaging and the function of DNA in chromatin, and metabolism.
Abstract: The past decade has highlighted the central role of epigenetic processes in cancer causation, progression and treatment. Next-generation sequencing is providing a window for visualizing the human epigenome and how it is altered in cancer. This view provides many surprises, including linking epigenetic abnormalities to mutations in genes that control DNA methylation, the packaging and the function of DNA in chromatin, and metabolism. Epigenetic alterations are leading candidates for the development of specific markers for cancer detection, diagnosis and prognosis. The enzymatic processes that control the epigenome present new opportunities for deriving therapeutic strategies designed to reverse transcriptional abnormalities that are inherent to the cancer epigenome.

2,483 citations


Journal ArticleDOI
TL;DR: Findings are discussed with a specific focus on the clinical utility of cell-free nucleic acids as blood biomarkers for cancer screening, prognosis and monitoring of the efficacy of anticancer therapies.
Abstract: 1described the presence of cell-free nucleic acid (cfNA) in human blood for the first time. This attracted little attention in the scientific community and it was not until 1994 that the importance of cfNA was recognized as a result of the detection of mutated RAS gene fragments in the blood of cancer patients 2,3 (TIMELINE). In 1996, microsatellite alterations on cell-free DNA (cfDNA) were shown in cancer patients 4

2,427 citations


Journal ArticleDOI
TL;DR: Otto Warburg's observations are re-examine in relation to the current concepts of cancer metabolism as being intimately linked to alterations of mitochondrial DNA, oncogenes and tumour suppressors, and thus readily exploitable for cancer therapy.
Abstract: Otto Warburg pioneered quantitative investigations of cancer cell metabolism, as well as photosynthesis and respiration. Warburg and co-workers showed in the 1920s that, under aerobic conditions, tumour tissues metabolize approximately tenfold more glucose to lactate in a given time than normal tissues, a phenomenon known as the Warburg effect. However, this increase in aerobic glycolysis in cancer cells is often erroneously thought to occur instead of mitochondrial respiration and has been misinterpreted as evidence for damage to respiration instead of damage to the regulation of glycolysis. In fact, many cancers exhibit the Warburg effect while retaining mitochondrial respiration. We re-examine Warburg's observations in relation to the current concepts of cancer metabolism as being intimately linked to alterations of mitochondrial DNA, oncogenes and tumour suppressors, and thus readily exploitable for cancer therapy.

2,312 citations


Journal ArticleDOI
TL;DR: The recent literature on tumour heterogeneity, field cancerization, molecular pathogenesis and the underlying causative cancer genes that can be exploited for novel and personalized treatments of patients with HNSCC are discussed.
Abstract: Head and neck squamous cell carcinomas (HNSCCs) are caused by tobacco and alcohol consumption and by infection with high-risk types of human papillomavirus (HPV). Tumours often develop within preneoplastic fields of genetically altered cells. The persistence of these fields after treatment presents a major challenge, because it might lead to local recurrences and second primary tumours that are responsible for a large proportion of deaths. Aberrant signalling pathways have been identified in HNSCCs and inhibition of epidermal growth factor receptor (EGFR) has proved a successful therapeutic strategy. In this Review, we discuss the recent literature on tumour heterogeneity, field cancerization, molecular pathogenesis and the underlying causative cancer genes that can be exploited for novel and personalized treatments of patients with HNSCC.

2,090 citations


Journal ArticleDOI
TL;DR: The central role of pH sensors in cancer cell adaptations is highlighted and how dysregulated pH could be exploited to develop cancer-specific therapeutics is suggested.
Abstract: Although cancer is a diverse set of diseases, cancer cells share a number of adaptive hallmarks. Dysregulated pH is emerging as a hallmark of cancer because cancers show a 'reversed' pH gradient with a constitutively increased intracellular pH that is higher than the extracellular pH. This gradient enables cancer progression by promoting proliferation, the evasion of apoptosis, metabolic adaptation, migration and invasion. Several new advances, including an increased understanding of pH sensors, have provided insight into the molecular basis for pH-dependent cell behaviours that are relevant to cancer cell biology. We highlight the central role of pH sensors in cancer cell adaptations and suggest how dysregulated pH could be exploited to develop cancer-specific therapeutics.

1,630 citations


Journal ArticleDOI
TL;DR: This Review describes how RAS oncogenes exploit their extensive signalling reach to affect multiple cellular processes that drive tumorigenesis.
Abstract: RAS proteins are essential components of signalling pathways that emanate from cell surface receptors. Oncogenic activation of these proteins owing to missense mutations is frequently detected in several types of cancer. A wealth of biochemical and genetic studies indicates that RAS proteins control a complex molecular circuitry that consists of a wide array of interconnecting pathways. In this Review, we describe how RAS oncogenes exploit their extensive signalling reach to affect multiple cellular processes that drive tumorigenesis.

1,494 citations


Journal ArticleDOI
TL;DR: Contributions of platelets to tumour cell survival and spread suggest platelets as a new avenue for therapy.
Abstract: Experimental evidence suggests that platelets contribute to metastasis through adhesive and haemostatic functions that promote cancer cell survival, immune evasion and interactions with vascular cells to assist organ colonization from the bloodstream. Extensive experimental evidence shows that platelets support tumour metastasis. The activation of platelets and the coagulation system have a crucial role in the progression of cancer. Within the circulatory system, platelets guard tumour cells from immune elimination and promote their arrest at the endothelium, supporting the establishment of secondary lesions. These contributions of platelets to tumour cell survival and spread suggest platelets as a new avenue for therapy.

1,309 citations


Journal ArticleDOI
TL;DR: The acknowledgement for the source of Figure 1 on page 327 of this article was incorrect and has now been corrected online.
Abstract: Nature Reviews Cancer 11, 325–337 (2011) The acknowledgement for the source of Figure 1 on page 327 of this article was incorrect and has now been corrected online.

1,198 citations


Journal ArticleDOI
TL;DR: The ability of cyclin D1 to activate the cyclin-dependent kinases CDK4 and CDK6 is the most extensively documented mechanism for their oncogenic actions and provides an attractive therapeutic target.
Abstract: Cyclin D1, and to a lesser extent the other D-type cyclins, is frequently deregulated in cancer and is a biomarker of cancer phenotype and disease progression. The ability of these cyclins to activate the cyclin-dependent kinases (CDKs) CDK4 and CDK6 is the most extensively documented mechanism for their oncogenic actions and provides an attractive therapeutic target. Is this an effective means of targeting the cyclin D oncogenes, and how might the patient subgroups that are most likely to benefit be identified?

Journal ArticleDOI
TL;DR: Nine major recommendations that should be taken to improve the outcome for women with ovarian cancer are outlined in this Opinion article.
Abstract: There have been major advances in our understanding of the cellular and molecular biology of the human malignancies that are collectively referred to as ovarian cancer. At a recent Helene Harris Memorial Trust meeting, an international group of researchers considered actions that should be taken to improve the outcome for women with ovarian cancer. Nine major recommendations are outlined in this Opinion article.

Journal ArticleDOI
TL;DR: The metastatic process is reconstructed and the importance of key physical and mechanical processes at each step of the cascade is described, which may help to solve some long-standing questions in disease progression and lead to new approaches to developing cancer diagnostics and therapies.
Abstract: Metastasis is a complex, multistep process responsible for >90% of cancer-related deaths. In addition to genetic and external environmental factors, the physical interactions of cancer cells with their microenvironment, as well as their modulation by mechanical forces, are key determinants of the metastatic process. We reconstruct the metastatic process and describe the importance of key physical and mechanical processes at each step of the cascade. The emerging insight into these physical interactions may help to solve some long-standing questions in disease progression and may lead to new approaches to developing cancer diagnostics and therapies.

Journal ArticleDOI
TL;DR: The contributions of SWI/SNF mutations to cancer formation are discussed, their normal functions are examined and opportunities for novel therapeutic interventions for SWI /SNF-mutant cancers are discussed.
Abstract: SWI/SNF chromatin remodelling complexes use the energy of ATP hydrolysis to remodel nucleosomes and to modulate transcription. Growing evidence indicates that these complexes have a widespread role in tumour suppression, as inactivating mutations in several SWI/SNF subunits have recently been identified at a high frequency in a variety of cancers. However, the mechanisms by which mutations in these complexes drive tumorigenesis are unclear. In this Review we discuss the contributions of SWI/SNF mutations to cancer formation, examine their normal functions and discuss opportunities for novel therapeutic interventions for SWI/SNF-mutant cancers.

Journal ArticleDOI
TL;DR: Understanding the crucial components of the bone microenvironment that influence tumour localization, along with the tumour-derived factors that modulate cellular and protein matrix components of bone to favour tumour expansion and invasion, is central to the pathophysiology of bone metastases.
Abstract: When cancer metastasizes to bone, considerable pain and deregulated bone remodelling occurs, greatly diminishing the possibility of cure. Metastasizing tumour cells mobilize and sculpt the bone microenvironment to enhance tumour growth and to promote bone invasion. Understanding the crucial components of the bone microenvironment that influence tumour localization, along with the tumour-derived factors that modulate cellular and protein matrix components of bone to favour tumour expansion and invasion, is central to the pathophysiology of bone metastases. Basic findings of tumour–bone interactions have uncovered numerous therapeutic opportunities that focus on the bone microenvironment to prevent and treat bone metastases.

Journal ArticleDOI
TL;DR: Can an abundantly expressed molecule be a reliable marker for the cancer-initiating cells (CICs) and is CD44 expression advantageous as it fulfils some of the special properties that are displayed by CICs, such as self-renewal, niche preparation, epithelial–mesenchymal transition and resistance to apoptosis?
Abstract: Can an abundantly expressed molecule be a reliable marker for the cancer-initiating cells (CICs; also known as cancer stem cells), which constitute the minority of cells within the mass of a tumour? CD44 has been implicated as a CIC marker in several malignancies of haematopoietic and epithelial origin. Is this a fortuitous coincidence owing to the widespread expression of the molecule or is CD44 expression advantageous as it fulfils some of the special properties that are displayed by CICs, such as self-renewal, niche preparation, epithelial-mesenchymal transition and resistance to apoptosis?

Journal ArticleDOI
TL;DR: Improved understanding of the molecular response of cells and tissues to ionizing radiation and a new appreciation of the exploitable genetic alterations in tumours have led to the development of treatments combining pharmacological interventions with ionizing Radiation that more specifically target either tumour or normal tissue, leading to improvements in efficacy.
Abstract: Radiotherapy is used to treat approximately 50% of all cancer patients, with varying success. The dose of ionizing radiation that can be given to the tumour is determined by the sensitivity of the surrounding normal tissues. Strategies to improve radiotherapy therefore aim to increase the effect on the tumour or to decrease the effects on normal tissues. These aims must be achieved without sensitizing the normal tissues in the first approach and without protecting the tumour in the second approach. Two factors have made such approaches feasible: namely, an improved understanding of the molecular response of cells and tissues to ionizing radiation and a new appreciation of the exploitable genetic alterations in tumours. These have led to the development of treatments combining pharmacological interventions with ionizing radiation that more specifically target either tumour or normal tissue, leading to improvements in efficacy.

Journal ArticleDOI
TL;DR: Progress in using mouse models to understand the roles ofmiRNAs in cancer and the potential for manipulating miRNAs for cancer therapy as these molecules make their way towards clinical trials are discussed.
Abstract: In normal cells multiple microRNAs (miRNAs) converge to maintain a proper balance of various processes, including proliferation, differentiation and cell death. miRNA dysregulation can have profound cellular consequences, especially because individual miRNAs can bind to and regulate multiple mRNAs. In cancer, the loss of tumour-suppressive miRNAs enhances the expression of target oncogenes, whereas increased expression of oncogenic miRNAs (known as oncomirs) can repress target tumour suppressor genes. This realization has resulted in a quest to understand the pathways that are regulated by these miRNAs using in vivo model systems, and to comprehend the feasibility of targeting oncogenic miRNAs and restoring tumour-suppressive miRNAs for cancer therapy. Here we discuss progress in using mouse models to understand the roles of miRNAs in cancer and the potential for manipulating miRNAs for cancer therapy as these molecules make their way towards clinical trials.

Journal ArticleDOI
TL;DR: Understanding how the FA pathway links nucleases, helicases and other DNA-processing enzymes should lead to more targeted uses of ICL-inducing agents in cancer treatment and could provide novel insights into drug resistance.
Abstract: Interstrand crosslinks (ICLs) are highly toxic DNA lesions that prevent transcription and replication by inhibiting DNA strand separation. Agents that induce ICLs were one of the earliest, and are still the most widely used, forms of chemotherapeutic drug. Only recently, however, have we begun to understand how cells repair these lesions. Important insights have come from studies of individuals with Fanconi anaemia (FA), a rare genetic disorder that leads to ICL sensitivity. Understanding how the FA pathway links nucleases, helicases and other DNA-processing enzymes should lead to more targeted uses of ICL-inducing agents in cancer treatment and could provide novel insights into drug resistance.

Journal ArticleDOI
TL;DR: This Review summarizes how chemotaxis directs the different behaviours of tumour cells and stromal cells in vivo, how molecular pathways regulateChemotaxis in tumours and how chemtaxis choreographs cell behaviour to shape the tumour microenvironment and to determine metastatic spread.
Abstract: Chemotaxis of tumour cells and stromal cells in the surrounding microenvironment is an essential component of tumour dissemination during progression and metastasis. This Review summarizes how chemotaxis directs the different behaviours of tumour cells and stromal cells in vivo, how molecular pathways regulate chemotaxis in tumour cells and how chemotaxis choreographs cell behaviour to shape the tumour microenvironment and to determine metastatic spread. The central importance of chemotaxis in cancer progression is highlighted by discussion of the use of chemotaxis as a prognostic marker, a treatment end point and a target of therapeutic intervention.

Journal ArticleDOI
TL;DR: A rapidly accumulating body of evidence suggests that there are important genetic and epigenetic differences between these two cell types, which seem to influence their tumorigenicity.
Abstract: The unique abilities of human pluripotent stem cells to self-renew and to differentiate into cells of the three germ layers make them an invaluable tool for the future of regenerative medicine. However, the same properties also make them tumorigenic, and therefore hinder their clinical application. Hence, the tumorigenicity of human embryonic stem cells (HESCs) has been extensively studied. Until recently, it was assumed that human induced pluripotent stem cells (HiPSCs) would behave like their embryonic counterparts in respect to their tumorigenicity. However, a rapidly accumulating body of evidence suggests that there are important genetic and epigenetic differences between these two cell types, which seem to influence their tumorigenicity.

Journal ArticleDOI
TL;DR: Obesity disrupts the dynamic role of the adipocyte in energy homeostasis, resulting in inflammation and alteration of adipokine (for example, leptin and adiponectin) signalling, which may also foster cancer development.
Abstract: The increasing incidence of obesity and its co-morbid conditions poses a great challenge to global health. In addition to cardiovascular disease and diabetes, epidemiological data demonstrate a link between obesity and multiple types of cancer. The molecular mechanisms underlying how obesity causes an increased risk of cancer are poorly understood. Obesity disrupts the dynamic role of the adipocyte in energy homeostasis, resulting in inflammation and alteration of adipokine (for example, leptin and adiponectin) signalling. Additionally, obesity causes secondary changes that are related to insulin signalling and lipid deregulation that may also foster cancer development. Understanding these molecular links may provide an avenue for preventive and therapeutic strategies to reduce cancer risk and mortality in an increasingly obese population.

Journal ArticleDOI
TL;DR: The discovery of Notch in Drosophila melanogaster opened the door to an ever-widening understanding of cellular processes that are controlled or influenced by Notch signalling, and a role for Notch is well established in haematological malignancies.
Abstract: The discovery of Notch in Drosophila melanogaster nearly a century ago opened the door to an ever-widening understanding of cellular processes that are controlled or influenced by Notch signalling. As would be expected with such a pleiotropic pathway, the deregulation of Notch signalling leads to several pathological conditions, including cancer. A role for Notch is well established in haematological malignancies, and more recent studies have provided evidence for the importance of Notch activity in solid tumours. As it is thought to act as an oncogene in some cancers but as a tumour suppressor in others, the role of Notch in solid tumours seems to be highly context dependent.

Journal ArticleDOI
TL;DR: Current challenges to the development of synthetic RNAi-based therapies are explored and new approaches to circumvent biological barriers, to avoid intolerable side effects and to achieve controlled and sustained release are considered.
Abstract: Inherent difficulties with blocking many desirable targets using conventional approaches have prompted many to consider using RNA interference (RNAi) as a therapeutic approach. Although exploitation of RNAi has immense potential as a cancer therapeutic, many physiological obstacles stand in the way of successful and efficient delivery. This Review explores current challenges to the development of synthetic RNAi-based therapies and considers new approaches to circumvent biological barriers, to avoid intolerable side effects and to achieve controlled and sustained release.

Journal ArticleDOI
TL;DR: StudyingPTEN in the continuum of rare syndromes, common cancers and mouse models provides insight into the role of PTEN in tumorigenesis and will inform targeted drug development.
Abstract: PTEN is among the most frequently inactivated tumour suppressor genes in sporadic cancer. PTEN has dual protein and lipid phosphatase activity, and its tumour suppressor activity is dependent on its lipid phosphatase activity, which negatively regulates the PI3K-AKT-mTOR pathway. Germline mutations in PTEN have been described in a variety of rare syndromes that are collectively known as the PTEN hamartoma tumour syndromes (PHTS). Cowden syndrome is the best-described syndrome within PHTS, with approximately 80% of patients having germline PTEN mutations. Patients with Cowden syndrome have an increased incidence of cancers of the breast, thyroid and endometrium, which correspond to sporadic tumour types that commonly exhibit somatic PTEN inactivation. Pten deletion in mice leads to Cowden syndrome-like phenotypes, and tissue-specific Pten deletion has provided clues to the role of PTEN mutation and loss in specific tumour types. Studying PTEN in the continuum of rare syndromes, common cancers and mouse models provides insight into the role of PTEN in tumorigenesis and will inform targeted drug development.

Journal ArticleDOI
TL;DR: The study of drug-resistant tumours has advanced the understanding of kinase biology, enabling the development of novel kinase inhibitors and further improvements in GIST treatment may require targeting GIST stem cell populations and/or additional genomic events.
Abstract: Gastrointestinal stromal tumours (GISTs) are a paradigm for the development of personalized treatment for cancer patients. The nearly simultaneous discovery of a biomarker that is reflective of their origin and the presence of gain-of-function kinase mutations in these tumours set the stage for more accurate diagnosis and the development of kinase inhibitor therapy. Subsequent studies of genotype and phenotype have led to a molecular classification of GIST and to treatment optimization on the basis of molecular subtype. The study of drug-resistant tumours has advanced our understanding of kinase biology, enabling the development of novel kinase inhibitors. Further improvements in GIST treatment may require targeting GIST stem cell populations and/or additional genomic events.

Journal ArticleDOI
TL;DR: Abnormal choline metabolism is emerging as a metabolic hallmark that is associated with oncogenesis and tumour progression, and increased levels of these compounds provide a non-invasive biomarker of transformation, staging and response to therapy.
Abstract: Abnormal choline metabolism is emerging as a metabolic hallmark that is associated with oncogenesis and tumour progression. Following transformation, the modulation of enzymes that control anabolic and catabolic pathways causes increased levels of choline-containing precursors and breakdown products of membrane phospholipids. These increased levels are associated with proliferation, and recent studies emphasize the complex reciprocal interactions between oncogenic signalling and choline metabolism. Because choline-containing compounds are detected by non-invasive magnetic resonance spectroscopy (MRS), increased levels of these compounds provide a non-invasive biomarker of transformation, staging and response to therapy. Furthermore, enzymes of choline metabolism, such as choline kinase, present novel targets for image-guided cancer therapy.

Journal ArticleDOI
TL;DR: This Review focuses on TRIM proteins that are involved in tumour development and progression.
Abstract: Emerging clinical evidence shows that the deregulation of ubiquitin-mediated degradation of oncogene products or tumour suppressors is likely to be involved in the aetiology of carcinomas and leukaemias. Recent studies have indicated that some members of the tripartite motif (TRIM) proteins (one of the subfamilies of the RING type E3 ubiquitin ligases) function as important regulators for carcinogenesis. This Review focuses on TRIM proteins that are involved in tumour development and progression.

Journal ArticleDOI
TL;DR: The changes in the bioavailability of ERs in tumours promote the selective restoration of their activity as one of the major therapeutic approaches for hormone-dependent cancers.
Abstract: By eliciting distinct transcriptional responses, the oestrogen receptors (ERs) ERα and ERβ exert opposite effects on cellular processes that include proliferation, apoptosis and migration and that differentially influence the development and the progression of cancer. Perturbation of ER subtype-specific expression has been detected in various types of cancer, and the differences in the expression of ERs are correlated with the clinical outcome. The changes in the bioavailability of ERs in tumours, together with their specific biological functions, promote the selective restoration of their activity as one of the major therapeutic approaches for hormone-dependent cancers.

Journal ArticleDOI
TL;DR: The following next steps are necessary: first, the development of immune-monitoring strategies for the identification of relevant biomarkers; second, the establishment of guidelines for the assessment of clinical end points; and third, the evaluation of combination therapy strategies to improve clinical benefit.
Abstract: The US Food and Drug Administration (FDA) recently approved two novel immunotherapy agents, sipuleucel-T and ipilimumab, which showed a survival benefit for patients with metastatic prostate cancer and melanoma, respectively. The mechanisms by which these agents provideclinical benefit are not completely understood. However, knowledge of these mechanisms will be crucial for probing human immune responses and tumour biology in order to understand what distinguishes responders from non-responders. The following next steps are necessary: first, the development of immune-monitoring strategies for the identification of relevant biomarkers; second, the establishment of guidelines for the assessment of clinical end points; and third, the evaluation of combination therapy strategies to improve clinical benefit.