scispace - formally typeset
Open AccessJournal ArticleDOI

Cell locomotion and focal adhesions are regulated by substrate flexibility

TLDR
The ability of cells to survey the mechanical properties of their surrounding environment is demonstrated and the possible involvement of both protein tyrosine phosphorylation and myosin-generated cortical forces in this process is suggested.
Abstract
Responses of cells to mechanical properties of the adhesion substrate were examined by culturing normal rat kidney epithelial and 3T3 fibroblastic cells on a collagen-coated polyacrylamide substrate that allows the flexibility to be varied while maintaining a constant chemical environment. Compared with cells on rigid substrates, those on flexible substrates showed reduced spreading and increased rates of motility or lamellipodial activity. Microinjection of fluorescent vinculin indicated that focal adhesions on flexible substrates were irregularly shaped and highly dynamic whereas those on firm substrates had a normal morphology and were much more stable. Cells on flexible substrates also contained a reduced amount of phosphotyrosine at adhesion sites. Treatment of these cells with phenylarsine oxide, a tyrosine phosphatase inhibitor, induced the formation of normal, stable focal adhesions similar to those on firm substrates. Conversely, treatment of cells on firm substrates with myosin inhibitors 2,3-butanedione monoxime or KT5926 caused the reduction of both vinculin and phosphotyrosine at adhesion sites. These results demonstrate the ability of cells to survey the mechanical properties of their surrounding environment and suggest the possible involvement of both protein tyrosine phosphorylation and myosin-generated cortical forces in this process. Such response to physical parameters likely represents an important mechanism of cellular interaction with the surrounding environment within a complex organism.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Matrix elasticity directs stem cell lineage specification.

TL;DR: Naive mesenchymal stem cells are shown here to specify lineage and commit to phenotypes with extreme sensitivity to tissue-level elasticity, consistent with the elasticity-insensitive commitment of differentiated cell types.
Journal ArticleDOI

Tissue Cells Feel and Respond to the Stiffness of Their Substrate

TL;DR: An understanding of how tissue cells—including fibroblasts, myocytes, neurons, and other cell types—sense matrix stiffness is just emerging with quantitative studies of cells adhering to gels with which elasticity can be tuned to approximate that of tissues.
Journal ArticleDOI

Myofibroblasts and mechano-regulation of connective tissue remodelling

TL;DR: It is clear that the understanding of the myofibroblast — its origins, functions and molecular regulation — will have a profound influence on the future effectiveness not only of tissue engineering but also of regenerative medicine generally.
Journal ArticleDOI

Matrix Crosslinking Forces Tumor Progression by Enhancing Integrin Signaling

TL;DR: Reduction of lysyl oxidase-mediated collagen crosslinking prevented MMTV-Neu-induced fibrosis, decreased focal adhesions and PI3K activity, impeded malignancy, and lowered tumor incidence, and data show how collagenCrosslinking can modulate tissue fibrosis and stiffness to force focal adhesion, growth factor signaling and breast malignancies.
Journal ArticleDOI

The extracellular matrix at a glance

TL;DR: The extracellular matrix is the non-cellular component present within all tissues and organs, and provides not only essential physical scaffolding for the cellular constituents but also initiates crucial biochemical and biomechanical cues that are required for tissue development.
References
More filters
Journal ArticleDOI

Geometric control of cell life and death.

TL;DR: Human and bovine capillary endothelial cells were switched from growth to apoptosis by using micropatterned substrates that contained extracellular matrix-coated adhesive islands of decreasing size to progressively restrict cell extension.
Journal ArticleDOI

Mechanotransduction across the cell surface and through the cytoskeleton

TL;DR: The results suggest that integrins act as mechanoreceptors and transmit mechanical signals to the cytoskeleton, which may be mediated simultaneously at multiple locations inside the cell through force-induced rearrangements within a tensionally integrated cytos skeleton.
Journal ArticleDOI

Flow-mediated endothelial mechanotransduction

TL;DR: The transmission of hemodynamic forces throughout the endothelium and the mechanotransduction mechanisms that lead to biophysical, biochemical, and gene regulatory responses of endothelial cells to hemodynamic shear stresses are reviewed.
Journal ArticleDOI

Role of cell shape in growth control

TL;DR: Cell shape was found to be tightly coupled to DNA synthesis and growth in nontransformed cells, suggesting a mechanism that is important in growth control of mammalian cells, and providing a more fundamental interpretation of such phenomena as density dependent inhibition of cell growth and anchorage dependence.
Journal ArticleDOI

Signal transduction from the extracellular matrix.

TL;DR: There are many compelling examples of control of cell differentiation and gene expression through adhesive interactions with extracellular matrix, including activation of T-lymphocytes through the T-cell antigen receptor is markedly enhanced by integrin-mediated adhesion to fibronectin or laminin.
Related Papers (5)