scispace - formally typeset
Journal ArticleDOI

Co3S4 hollow nanospheres grown on graphene as advanced electrode materials for supercapacitors

Reads0
Chats0
TLDR
In this paper, a novel nanocomposite of Co3S4 hollow nanospheres grown on reduced graphene oxide (rGO) has been synthesized by a facile two-step method and used as an advanced electrode material for supercapacitors.
Abstract
A novel nanocomposite of Co3S4 hollow nanospheres grown on reduced graphene oxide (rGO) has been synthesized by a facile two-step method and used as an advanced electrode material for supercapacitors. The intriguing formation and attachment mechanism of these Co3S4 hollow nanospheres on graphene are investigated. More importantly, it is found that the electrochemical performance of the as-prepared nanocomposite could be effectively improved by the chemical interaction between rGO and Co3S4. Specifically, it exhibits a high specific discharge capacitance of 675.9 F g−1 at 0.5 A g−1 and 521.7 F g−1 at 5 A g−1. These results suggest the great promise of fabricating graphene-supported hybrid materials for high-performance energy applications.

read more

Citations
More filters
Journal ArticleDOI

Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties

TL;DR: An anion exchange method is reported to synthesize a complex ternary metal sulfides hollow structure, namely nickel cobalt sulfide ball-in-ball hollow spheres that show long-term cycling performance and potential application in high-performance electrochemical capacitors.
Journal ArticleDOI

Design Hierarchical Electrodes with Highly Conductive NiCo2S4 Nanotube Arrays Grown on Carbon Fiber Paper for High-Performance Pseudocapacitors

TL;DR: The development of highly conductive NiCo2S4 single crystalline nanotube arrays grown on a flexible carbon fiber paper (CFP), which can serve not only as a good pseudocapacitive material but also as a three-dimensional conductive scaffold for loading additional electroactive materials.
Journal ArticleDOI

Highly conductive NiCo2S4 urchin-like nanostructures for high-rate pseudocapacitors

TL;DR: A 3D highly conductive urchin-like NiCo₂S₄ nanostructure has been successfully prepared using a facile precursor transformation method and demonstrates superior electrochemical performance with ultrahigh high-rate capacitance, very high specific capacitance and excellent cycling stability.
Journal ArticleDOI

NiCo2S4 Nanosheets Grown on Nitrogen‐Doped Carbon Foams as an Advanced Electrode for Supercapacitors

TL;DR: In this article, the rational design and fabrication of NiCo2S4 nanosheets supported on nitrogen-doped carbon foams (NCF) is presented as a novel flexible electrode for supercapacitors.
Journal ArticleDOI

Nanoarchitectured Design of Porous Materials and Nanocomposites from Metal-Organic Frameworks.

TL;DR: An overview of recent developments achieved in the fabrication of porous MOF-derived nanostructures including carbons, metal oxides, metal chalcogenides (metal sulfides and selenides), metal carbide, metal phosphides and their composites are provided.
References
More filters
Journal ArticleDOI

Materials for electrochemical capacitors

TL;DR: This work has shown that combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries.
Journal ArticleDOI

Graphene: Status and Prospects

TL;DR: This review analyzes recent trends in graphene research and applications, and attempts to identify future directions in which the field is likely to develop.
Journal ArticleDOI

Graphene and Graphene Oxide: Synthesis, Properties, and Applications

TL;DR: An overview of the synthesis, properties, and applications of graphene and related materials (primarily, graphite oxide and its colloidal suspensions and materials made from them), from a materials science perspective.
Journal ArticleDOI

Advanced Materials for Energy Storage

TL;DR: This Review introduces several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage, and the current status of high-performance hydrogen storage materials for on-board applications and electrochemicals for lithium-ion batteries and supercapacitors.
Related Papers (5)