scispace - formally typeset
Journal ArticleDOI

Demonstration of metal-dielectric negative-index metamaterials with improved performance at optical frequencies

Reads0
Chats0
TLDR
In this paper, a low-loss negative-index metamaterial with the magnitude of the real part of the index comparable with the imaginary part is demonstrated, where over 40% transmission is achieved in the negative-Index region by structural adjustment of the impedance matching between the metammaterial and the air-substrate claddings.
Abstract
We experimentally demonstrate a comparatively low-loss negative-index metamaterial with the magnitude of the real part of the index comparable with the imaginary part. Over 40% transmission is achieved in the negative-index region by structural adjustment of the impedance matching between the metamaterial and the air-substrate claddings. This structure has the potential of achieving high transmission and small loss in the negative-index region.

read more

Citations
More filters
Journal ArticleDOI

Optical negative-index metamaterials

TL;DR: In this paper, a review describes the recent progress made in creating nanostructured metamaterials with a negative index at optical wavelengths, and discusses some of the devices that could result from these new materials.
Journal ArticleDOI

Infrared Perfect Absorber and Its Application As Plasmonic Sensor

TL;DR: A perfect plasmonic absorber is experimentally demonstrated at lambda = 1.6 microm, its polarization-independent absorbance is 99% at normal incidence and remains very high over a wide angular range of incidence around +/-80 degrees.
Journal ArticleDOI

Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit.

TL;DR: A nanoplasmonic analogue of EIT is experimentally demonstrated using a stacked optical metamaterial to achieve a very narrow transparency window with high modulation depth owing to nearly complete suppression of radiative losses.
Journal ArticleDOI

Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials

TL;DR: It is shown that the concept of metamaterial-inspired nanoelectronics (“metactronics”) can bring the tools and mathematical machinery of the circuit theory into optics, may link the fields of optics, electronics, plasmonics, and meetamaterials, and may provide road maps to future innovations in nanoscale optical devices, components, and more intricate nanoscales metammaterials.
Journal ArticleDOI

Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing.

TL;DR: A planar metamaterial analogue of electromagnetically induced transparency at optical frequencies is experimentally demonstrated and yields a sensitivity of 588 nm/RIU and a figure of merit of 3.8.
References
More filters
Journal ArticleDOI

Negative Refraction Makes a Perfect Lens

TL;DR: The authors' simulations show that a version of the lens operating at the frequency of visible light can be realized in the form of a thin slab of silver, which resolves objects only a few nanometers across.
Journal ArticleDOI

Experimental Verification of a Negative Index of Refraction

TL;DR: These experiments directly confirm the predictions of Maxwell's equations that n is given by the negative square root ofɛ·μ for the frequencies where both the permittivity and the permeability are negative.
Journal ArticleDOI

Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients

TL;DR: In this article, the authors analyzed the reflection and transmission coefficients calculated from transfer matrix simulations on finite lengths of electromagnetic metamaterials, to determine the effective permittivity and permeability.
Journal ArticleDOI

Rigorous coupled-wave analysis of planar-grating diffraction

TL;DR: In this article, a rigorous coupled-wave approach is used to analyze diffraction by general planar gratings bounded by two different media, and the analysis is based on a state-variables representation and results in a unifying, easily computer-implementable matrix formulation.
Journal ArticleDOI

Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared

TL;DR: The data for the noble metals and Al, Pb, and W can be reasonably fit using the Drude model and it is shown that -epsilon1(omegas) = epsilon2(omega) approximately omega(2)(p)/(2omega( 2)(tau) at the damping frequency omega = omega(tau), where the plasma frequency is omega(p).
Related Papers (5)