scispace - formally typeset
Journal ArticleDOI

Design of the friction stir welding tool using the continuum based FEM model

TLDR
In this paper, a FSW process with varying pin geometries and advancing speeds is numerically modeled, and a thermo-mechanically coupled, rigid-viscoplastic, fully 3D FEM analysis able to predict the process variables as well as the material flow pattern and the grain size in the welded joints is performed.
Abstract
In friction stir welding (FSW), the welding tool geometry plays a fundamental role in obtaining desirable microstructures in the weld and the heat-affected zones, and consequently improving strength and fatigue resistance of the joint. In this paper, a FSW process with varying pin geometries (cylindrical and conical) and advancing speeds is numerically modeled, and a thermo-mechanically coupled, rigid-viscoplastic, fully 3D FEM analysis able to predict the process variables as well as the material flow pattern and the grain size in the welded joints is performed. The obtained results allow finding optimal tool geometry and advancing speed for improving nugget integrity of aluminum alloys.

read more

Citations
More filters
Journal ArticleDOI

Recent advances in friction-stir welding : Process, weldment structure and properties

TL;DR: In this article, the authors deal with the fundamental understanding of the process and its metallurgical consequences, focusing on heat generation, heat transfer and plastic flow during welding, elements of tool design, understanding defect formation and the structure and properties of the welded materials.
Journal ArticleDOI

Review: friction stir welding tools

TL;DR: Friction stir welding (FSW) is a widely used solid state joining process for soft materials such as aluminium alloys because it avoids many of the common problems of fusion welding as mentioned in this paper.
Journal ArticleDOI

The role of friction stir welding tool on material flow and weld formation

TL;DR: In this article, an attempt has been made to understand the mechanism of friction stir weld formation and the role of the friction stir welding tool in it by understanding the material flow pattern in the weld produced in a special experiment.
Journal ArticleDOI

A review of numerical analysis of friction stir welding

TL;DR: In this article, the authors review the latest developments in the numerical analysis of friction stir welding processes, microstructures of friction-stir welded joints and the properties of friction spat welded structures.
Journal ArticleDOI

Friction stir welding: Process, automation, and control

TL;DR: In this article, the basic principles of friction stir welding (FSW) are discussed, including terminology, material flow, joint configurations, tool design, materials, and defects, with an emphasis on recent advances in aerospace, automotive, and ship building.
References
More filters
Journal ArticleDOI

Microstructural investigation of friction stir welded 7050-T651 aluminium

TL;DR: In this paper, the grain structure, dislocation density and second phase particles in various regions including the dynamically recrystallized zone (DXZ), thermo-mechanically affected zone (TMAZ), and heat-affected zone (HAZ) of a friction stir weld aluminum alloy 7050-T651 were investigated and compared with the unaffected base metal.
Journal ArticleDOI

Properties of friction-stir-welded 7075 T651 aluminum

TL;DR: Friction stir welding (FSW) was used to weld 7075 T651 aluminum, an alloy considered essentially unweldable by fusion processes as discussed by the authors, which exposed the alloy to a short time, high-temperature spike, while introducing extensive localized deformation.
Journal ArticleDOI

Effects of friction stir welding on microstructure of 7075 aluminum

TL;DR: In this article, the microstructural changes effected by friction stir welding of 7075 Al. were evaluated and the authors concluded that friction-stir welding has the potential to avoid significant changes in microstructure and mechanical properties.
Journal ArticleDOI

Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys

TL;DR: In this paper, the authors developed a basic understanding of the evolution of microstructure in the dynamically recrystallized region and to relate it to the deformation process variables of strain, strain rate, and temperature.
Journal ArticleDOI

Tensile properties and fracture locations of friction-stir-welded joints of 2017-T351 aluminum alloy

TL;DR: In this article, the relationship between welding parameters and tensile properties of the joints has been investigated and it was shown that the tensile property and fracture locations of the joint are significantly affected by the welding process parameters.
Related Papers (5)