scispace - formally typeset
Journal ArticleDOI

Designed protein- and peptide-based hydrogels for biomedical sciences

TLDR
A review of protein-and peptide-based hydrogels can be found in this paper, where the authors discuss the potential of using protein or peptide based hydrogel in the field of biomedical sciences.
Abstract
Proteins are fundamentally the most important macromolecules for biochemical, mechanical, and structural functions in living organisms. Therefore, they provide us with diverse structural building blocks for constructing various types of biomaterials, including an important class of such materials, hydrogels. Since natural peptides and proteins are biocompatible and biodegradable, they have features advantageous for their use as the building blocks of hydrogels for biomedical applications. They display constitutional and mechanical similarities with the native extracellular matrix (ECM), and can be easily bio-functionalized via genetic and chemical engineering with features such as bio-recognition, specific stimulus-reactivity, and controlled degradation. This review aims to give an overview of hydrogels made up of recombinant proteins or synthetic peptides as the structural elements building the polymer network. A wide variety of hydrogels composed of protein or peptide building blocks with different origins and compositions – including β-hairpin peptides, α-helical coiled coil peptides, elastin-like peptides, silk fibroin, and resilin – have been designed to date. In this review, the structures and characteristics of these natural proteins and peptides, with each of their gelation mechanisms, and the physical, chemical, and mechanical properties as well as biocompatibility of the resulting hydrogels are described. In addition, this review discusses the potential of using protein- or peptide-based hydrogels in the field of biomedical sciences, especially tissue engineering.

read more

Citations
More filters
Journal ArticleDOI

Novel Trends in Hydrogel Development for Biomedical Applications: A Review

TL;DR: The main purpose of this review article was to summarize the most recent trends of hydrogel technology, going through the most used polymeric materials and the most popularHydrogel synthesis methods in recent years, including different strategies of enhancing hydrogels’ properties, such as cross-linking and the manufacture of composite hydrogELs.
Journal ArticleDOI

A Review on Recent Advances of Protein-Polymer Hydrogels

TL;DR: Protein-polymer hydrogels have gained significant progress in various fields, such as tissue engineering, drug delivery and encapsulation, wearable sensors, adsorption, and other applications as discussed by the authors.
Journal ArticleDOI

A review on recent advances of Protein-Polymer hydrogels

TL;DR: Protein-polymer hydrogels have gained significant progress in various fields, such as tissue engineering, drug delivery and encapsulation, wearable sensors, adsorption, and other applications as mentioned in this paper .
Journal ArticleDOI

Smart Hydrogels Meet Carbon Nanomaterials for New Frontiers in Medicine.

TL;DR: Carbon nanomaterials include diverse structures and morphologies, such as fullerenes, nano-onions, nanodots, Nanodiamonds, nanohorns, nanotubes, and graphene-based materials as mentioned in this paper.
Journal ArticleDOI

Synthetic biology as driver for the biologization of materials sciences.

TL;DR: In this article, the authors identify and review two main directions by which synthetic biology can be harnessed to provide new impulses for the biologization of the materials sciences: first, the engineering of cells to produce precursors for the subsequent synthesis of materials, and second, engineered living materials that are formed or assembled by cells or in which cells contribute specific functions while remaining an integral part of the living composite material.
References
More filters
Journal ArticleDOI

Design and bioproduction of a recombinant multi(bio)functional elastin-like protein polymer containing cell adhesion sequences for tissue engineering purposes.

TL;DR: This work is framed in a long term project aimed to exploit the power of genetic engineering for the design and bioproduction of complex ECM analogues showing the rich complexity and multi (bio)functionality of the natural matrix.
Journal ArticleDOI

Elastin-like polypeptides as models of intrinsically disordered proteins.

TL;DR: Their low sequence complexity, phase behavior, and elastic properties make them an interesting “minimal” artificial IDP, and the study of ELPs can hence provide insights into the behavior of other more complex IDPs.
Journal ArticleDOI

There is no such thing as a biocompatible material

TL;DR: It is argued here that biocompatibility is a perfectly acceptable term, but that it subsumes a variety of mechanisms of interaction between biomaterials and tissues or tissue components and can only be considered in the context of the characteristics of both the material and the biological host within which it placed.
Book ChapterDOI

An Introduction to Hydrogels and Some Recent Applications

TL;DR: In this paper, the fundamental aspects and several applications of hydrogels based on the old and the most recent publica− tions in this field are discussed and discussed. But, they do not cover the applications of these properties.
Related Papers (5)
Trending Questions (2)
What is the common protein based hydrogel for biomedical implants?

The common protein-based hydrogel for biomedical implants is not specified in the provided information.

What to choose as a standard protein based hydrogel in biomedical implants?

There is no specific recommendation for a standard protein-based hydrogel for biomedical implants in the provided information.