scispace - formally typeset
Journal ArticleDOI

Designed protein- and peptide-based hydrogels for biomedical sciences

TLDR
A review of protein-and peptide-based hydrogels can be found in this paper, where the authors discuss the potential of using protein or peptide based hydrogel in the field of biomedical sciences.
Abstract
Proteins are fundamentally the most important macromolecules for biochemical, mechanical, and structural functions in living organisms. Therefore, they provide us with diverse structural building blocks for constructing various types of biomaterials, including an important class of such materials, hydrogels. Since natural peptides and proteins are biocompatible and biodegradable, they have features advantageous for their use as the building blocks of hydrogels for biomedical applications. They display constitutional and mechanical similarities with the native extracellular matrix (ECM), and can be easily bio-functionalized via genetic and chemical engineering with features such as bio-recognition, specific stimulus-reactivity, and controlled degradation. This review aims to give an overview of hydrogels made up of recombinant proteins or synthetic peptides as the structural elements building the polymer network. A wide variety of hydrogels composed of protein or peptide building blocks with different origins and compositions – including β-hairpin peptides, α-helical coiled coil peptides, elastin-like peptides, silk fibroin, and resilin – have been designed to date. In this review, the structures and characteristics of these natural proteins and peptides, with each of their gelation mechanisms, and the physical, chemical, and mechanical properties as well as biocompatibility of the resulting hydrogels are described. In addition, this review discusses the potential of using protein- or peptide-based hydrogels in the field of biomedical sciences, especially tissue engineering.

read more

Citations
More filters
Journal ArticleDOI

Novel Trends in Hydrogel Development for Biomedical Applications: A Review

TL;DR: The main purpose of this review article was to summarize the most recent trends of hydrogel technology, going through the most used polymeric materials and the most popularHydrogel synthesis methods in recent years, including different strategies of enhancing hydrogels’ properties, such as cross-linking and the manufacture of composite hydrogELs.
Journal ArticleDOI

A Review on Recent Advances of Protein-Polymer Hydrogels

TL;DR: Protein-polymer hydrogels have gained significant progress in various fields, such as tissue engineering, drug delivery and encapsulation, wearable sensors, adsorption, and other applications as discussed by the authors.
Journal ArticleDOI

A review on recent advances of Protein-Polymer hydrogels

TL;DR: Protein-polymer hydrogels have gained significant progress in various fields, such as tissue engineering, drug delivery and encapsulation, wearable sensors, adsorption, and other applications as mentioned in this paper .
Journal ArticleDOI

Smart Hydrogels Meet Carbon Nanomaterials for New Frontiers in Medicine.

TL;DR: Carbon nanomaterials include diverse structures and morphologies, such as fullerenes, nano-onions, nanodots, Nanodiamonds, nanohorns, nanotubes, and graphene-based materials as mentioned in this paper.
Journal ArticleDOI

Synthetic biology as driver for the biologization of materials sciences.

TL;DR: In this article, the authors identify and review two main directions by which synthetic biology can be harnessed to provide new impulses for the biologization of the materials sciences: first, the engineering of cells to produce precursors for the subsequent synthesis of materials, and second, engineered living materials that are formed or assembled by cells or in which cells contribute specific functions while remaining an integral part of the living composite material.
References
More filters
Journal ArticleDOI

Swelling behavior and morphological evolution of mixed gelatin/silk fibroin hydrogels.

TL;DR: This work investigates the swelling and protein release kinetics of G/SF hydrogels varying in composition at temperatures below and above the G h-->c transition and dictates the efficacy of these novel materials as stimuli-responsive delivery vehicles.
Journal ArticleDOI

Predicting Transition Temperatures of Elastin-Like Polypeptide Fusion Proteins

TL;DR: A linear correlation was found between overall residue composition of accessible protein surface weighted by a characteristic transition temperature for each residue and the difference in transition temperatures between the ELP protein fusion and the corresponding free ELP.
Journal ArticleDOI

Viability and neuronal differentiation of neural stem cells encapsulated in silk fibroin hydrogel functionalized with an IKVAV peptide

TL;DR: The silk fibroin hydrogel modified by IKVAV peptide showed increased cell viability and an enhanced neuronal differentiation capability, which contributed to understanding the effects of IKVsav peptide on the behaviour of neural stem cells.
Journal ArticleDOI

Structure‐activity study of a laminin α1 chain active peptide segment Ile‐Lys‐Val‐Ala‐Val (IKVAV)

TL;DR: The structural requirements of the IKVAV sequence for cell attachment and neurite outgrowth are determined using various 12‐mer synthetic peptide analogs and suggest that the lysine and isoleucine residues are critical for the biological functions of the proposed peptide.
Related Papers (5)
Trending Questions (2)
What is the common protein based hydrogel for biomedical implants?

The common protein-based hydrogel for biomedical implants is not specified in the provided information.

What to choose as a standard protein based hydrogel in biomedical implants?

There is no specific recommendation for a standard protein-based hydrogel for biomedical implants in the provided information.