scispace - formally typeset
Journal ArticleDOI

Device and Architecture Outlook for Beyond CMOS Switches

TLDR
A number of unique switches have been proposed as replacements for CMOS, many of which do not even use electron charge as the state variable and pass tokens in the spin, excitonic, photonic, magnetic, quantum, or even heat domains.
Abstract
Sooner or later, fundamental limitations destine complementary metal-oxide-semiconductor (CMOS) scaling to a conclusion. A number of unique switches have been proposed as replacements, many of which do not even use electron charge as the state variable. Instead, these nanoscale structures pass tokens in the spin, excitonic, photonic, magnetic, quantum, or even heat domains. Emergent physical behaviors and idiosyncrasies of these novel switches can complement the execution of specific algorithms or workloads by enabling quite unique architectures. Ultimately, exploiting these unusual responses will extend throughput in high-performance computing. Alternative tokens also require new transport mechanisms to replace the conventional chip wire interconnect schemes of charge-based computing. New intrinsic limits to scaling in post-CMOS technologies are likely to be bounded ultimately by thermodynamic entropy and Shannon noise.

read more

Citations
More filters
Journal ArticleDOI

I and i

Kevin Barraclough
- 08 Dec 2001 - 
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Journal ArticleDOI

Tunnel field-effect transistors as energy-efficient electronic switches

TL;DR: Tunnels based on ultrathin semiconducting films or nanowires could achieve a 100-fold power reduction over complementary metal–oxide–semiconductor transistors, so integrating tunnel FETs with CMOS technology could improve low-power integrated circuits.
Journal ArticleDOI

Low-Voltage Tunnel Transistors for Beyond CMOS Logic

TL;DR: This review introduces and summarizes progress in the development of the tunnel field- effect transistors (TFETs) including its origin, current experimental and theoretical performance relative to the metal-oxide-semiconductor field-effect transistor (MOSFET), basic current-transport theory, design tradeoffs, and fundamental challenges.
Journal ArticleDOI

Tunnel Field-Effect Transistors: State-of-the-Art

TL;DR: In this paper, the development of tunnel field-effect transistors (TFETs) is reviewed by comparing experimental results and theoretical predictions against 16-nm FinFET CMOS technology.
Journal ArticleDOI

Overview of Beyond-CMOS Devices and a Uniform Methodology for Their Benchmarking

TL;DR: Structural and operational principles of multiple logic devices under study within the NRI to carry the development of integrated circuits beyond the complementary metal-oxide-semiconductor (CMOS) roadmap are described, and theories used for benchmarking these devices are overviewed.
References
More filters
Book ChapterDOI

I and J

Journal ArticleDOI

The rise of graphene

TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Journal ArticleDOI

I and i

Kevin Barraclough
- 08 Dec 2001 - 
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Journal ArticleDOI

Cramming More Components Onto Integrated Circuits

TL;DR: Integrated circuits will lead to such wonders as home computers or at least terminals connected to a central computer, automatic controls for automobiles, and personal portable communications equipment as mentioned in this paper. But the biggest potential lies in the production of large systems.
Journal Article

Cramming More Components onto Integrated Circuits

Gordon E. Moore
- 01 Jan 1965 - 
TL;DR: Integrated circuits will lead to such wonders as home computers or at least terminals connected to a central computer, automatic controls for automobiles, and personal portable communications equipment as discussed by the authors. But the biggest potential lies in the production of large systems.
Related Papers (5)