scispace - formally typeset
Open AccessJournal ArticleDOI

DNA-replication checkpoint control at the Drosophila midblastula transition

Ody C. M. Sibon, +2 more
- 03 Jul 1997 - 
- Vol. 388, Iss: 6637, pp 93-97
TLDR
This article showed that mutations in the grapes (grp) checkpoint 1 kinase homologue in Drosophila block the morphological and biochemical changes that accompany the midblastula transition, leading to a continuation of the maternal cell-cycle programme, and disrupt DNA-replication checkpoint control of cell cycle progression.
Abstract
Embryogenesis is typically initiated by a series of rapid mitotic divisions that are under maternal genetic control. The switch to zygotic control of embryogenesis at the midblastula transition is accompanied by significant increases in cell-cycle length and gene transcription, and changes in embryo morphology. Here we show that mutations in the grapes (grp) checkpoint 1 kinase homologue in Drosophila block the morphological and biochemical changes that accompany the midblastula transition, lead to a continuation of the maternal cell-cycle programme, and disrupt DNA-replication checkpoint control of cell-cycle progression. The timing of the midblastula transition is controlled by the ratio of nuclei to cytoplasm (the nucleocytoplasmic ratio), suggesting that this developmental transition is triggered by titration of a maternal factor by the increasing mass of nuclear material that accumulates during the rapid embryonic mitoses. Our observations support a model for cell-cycle control at the midblastula transition in which titration of a maternal component of the DNA-replication machinery slows DNA synthesis and induces a checkpoint-dependent delay in cell-cycle progression. This delay may allow both completion of S phase and transcription of genes that initiate the switch to zygotic control of embryogenesis.

read more

Content maybe subject to copyright    Report

Citations
More filters

DNA Damage-Induced Apoptosis in the Presence and Absence of the Tumor Suppressor p53: A Dissertation

TL;DR: It is demonstrated that mutation of both sumoylation sites dramatically reduces the transcriptional activity of p53 and its ability to induce apoptosis in transgenic flies, providing in vivo evidence thatsumoylation is critical for Drosophila p53 function.
Journal ArticleDOI

Modeling the role for nuclear import dynamics in the early embryonic cell cycle.

TL;DR: In this article, the authors explore how different nuclear import regimes can affect protein accumulation in the nucleus in the early Drosophila embryo and find that the import-limited H3 dynamics contribute to increased robustness and allow for stepwise cell-cycle slowing at the mid-blastula transition (MBT).
Posted ContentDOI

Blm Helicase Facilitates Rapid Replication of Repetitive DNA Sequences in early Drosophila Development

TL;DR: The absence of functional BLM DNA helicase, a member of the RecQ family of helicases, is responsible for the rare human disorder Bloom Syndrome, which results in developmental abnormalities, DNA repair defects, genomic instability, and a predisposition to cancer.
Journal ArticleDOI

Blm helicase facilitates rapid replication of repetitive DNA sequences in early Drosophila development.

TL;DR: The absence of functional BLM DNA helicase, a member of the RecQ family of helicases, is responsible for the rare human disorder Bloom Syndrome, which results in developmental abnormalities, DNA repair defects, genomic instability, and a predisposition to cancer as discussed by the authors.
Dissertation

Roles of the Atr1-Chk1 pathway in the phytopathogenic fungus Ustilago maydis

Sena Tomás, +1 more
TL;DR: U. maydis was used to answer the questions above mentioned and to characterize the DNA damage response pathway and to study the model organism used as a model organism in the study of DNA repair processes.
References
More filters
Journal ArticleDOI

A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback.

TL;DR: A non-radioactive in situ hybridization technique for the localization of RNA in whole mount Drosophila embryos and revealed translational control of the maternally derived hb mRNA, which was difficult to detect by conventional techniques.
Journal ArticleDOI

Cell Cycle Checkpoints: Preventing an Identity Crisis

TL;DR: Signal transduction pathways that transmit checkpoint signals in response to DNA damage, replication blocks, and spindle damage are revealed, underscoring the conservation of cell cycle regulatory machinery.
Journal ArticleDOI

A major developmental transition in early xenopus embryos: I. characterization and timing of cellular changes at the midblastula stage

TL;DR: The Xenopus embryo undergoes 12 rapid synchronous cleavages followed by a period of slower asynchronous divisions more typical of somatic cells, termed the midblastula transition (MBT), which shows that at the MBT the blastomeres become motile and transcriptionally active for the first time.
Journal ArticleDOI

Studies of nuclear and cytoplasmic behaviour during the five mitotic cycles that precede gastrulation in Drosophila embryogenesis

V.E. Foe, +1 more
TL;DR: Using differential interference contrast optics, combined with cinematography, the morphological changes that the living, syncytial embryo undergoes from stage 10 through 14 of Drosophila embryogenesis, that is just prior to and during formation of the cellular blastoderm are studied.
Related Papers (5)