scispace - formally typeset
Open AccessJournal ArticleDOI

DNA-replication checkpoint control at the Drosophila midblastula transition

Ody C. M. Sibon, +2 more
- 03 Jul 1997 - 
- Vol. 388, Iss: 6637, pp 93-97
TLDR
This article showed that mutations in the grapes (grp) checkpoint 1 kinase homologue in Drosophila block the morphological and biochemical changes that accompany the midblastula transition, leading to a continuation of the maternal cell-cycle programme, and disrupt DNA-replication checkpoint control of cell cycle progression.
Abstract
Embryogenesis is typically initiated by a series of rapid mitotic divisions that are under maternal genetic control. The switch to zygotic control of embryogenesis at the midblastula transition is accompanied by significant increases in cell-cycle length and gene transcription, and changes in embryo morphology. Here we show that mutations in the grapes (grp) checkpoint 1 kinase homologue in Drosophila block the morphological and biochemical changes that accompany the midblastula transition, lead to a continuation of the maternal cell-cycle programme, and disrupt DNA-replication checkpoint control of cell-cycle progression. The timing of the midblastula transition is controlled by the ratio of nuclei to cytoplasm (the nucleocytoplasmic ratio), suggesting that this developmental transition is triggered by titration of a maternal factor by the increasing mass of nuclear material that accumulates during the rapid embryonic mitoses. Our observations support a model for cell-cycle control at the midblastula transition in which titration of a maternal component of the DNA-replication machinery slows DNA synthesis and induces a checkpoint-dependent delay in cell-cycle progression. This delay may allow both completion of S phase and transcription of genes that initiate the switch to zygotic control of embryogenesis.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Rif1 prolongs the embryonic S phase at the Drosophila mid-blastula transition.

TL;DR: This work found that Cdk1 activity inhibited the chromatin association of Rap1 interacting factor 1 (Rif1), a candidate repressor of replication, and shows that Rif1 and S phase kinases compose a replication timer controlling first the developmental onset of late replication and then the precise schedule of replication within S phase.
Journal ArticleDOI

The Endo-siRNA Pathway Is Essential for Robust Development of the Drosophila Embryo

TL;DR: It is shown that the genes DICER-2 and ARGONAUTE2, which code for integral protein components of the endo-siRNA pathway, are essential for robust development and temperature compensation in the Drosophila embryo when exposed to temperature perturbations, and it is hypothesized that the enda-siRNAs may regulate the degradation of maternal cell cycle regulators.
Journal ArticleDOI

Developmentally Regulated Elimination of Damaged Nuclei Involves a Chk2-Dependent Mechanism of mRNA Nuclear Retention

TL;DR: It is shown that nuclear retention involves a Chk2-dependent mechanism of mRNA nuclear retention that is induced by DNA damage and prevents the translation of specific zygotic mRNAs encoding key mitotic, cytoskeletal, and nuclear proteins required to maintain nuclear viability.
Journal ArticleDOI

Dominant‐negative mutants reveal a role for the Cdk7 kinase at the mid‐blastula transition in Drosophila embryos

TL;DR: It is suggested that a distinct pool of CAK activity that is unaffected by expression of the cdk7DN mutants is present in these embryos, which implicate Cdk7 in the control of transcriptional machinery in vivo.
Journal ArticleDOI

Histone concentration regulates the cell cycle and transcription in early development

TL;DR: Overexpression or knockdown of histones results in delayed or advanced cell cycle slowing and transcriptional activation at the mid-blastula transition, respectively, with differentially expressed genes associated with specific chromatin features.
References
More filters
Journal ArticleDOI

A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback.

TL;DR: A non-radioactive in situ hybridization technique for the localization of RNA in whole mount Drosophila embryos and revealed translational control of the maternally derived hb mRNA, which was difficult to detect by conventional techniques.
Journal ArticleDOI

Cell Cycle Checkpoints: Preventing an Identity Crisis

TL;DR: Signal transduction pathways that transmit checkpoint signals in response to DNA damage, replication blocks, and spindle damage are revealed, underscoring the conservation of cell cycle regulatory machinery.
Journal ArticleDOI

A major developmental transition in early xenopus embryos: I. characterization and timing of cellular changes at the midblastula stage

TL;DR: The Xenopus embryo undergoes 12 rapid synchronous cleavages followed by a period of slower asynchronous divisions more typical of somatic cells, termed the midblastula transition (MBT), which shows that at the MBT the blastomeres become motile and transcriptionally active for the first time.
Journal ArticleDOI

Studies of nuclear and cytoplasmic behaviour during the five mitotic cycles that precede gastrulation in Drosophila embryogenesis

V.E. Foe, +1 more
TL;DR: Using differential interference contrast optics, combined with cinematography, the morphological changes that the living, syncytial embryo undergoes from stage 10 through 14 of Drosophila embryogenesis, that is just prior to and during formation of the cellular blastoderm are studied.
Related Papers (5)