scispace - formally typeset
Open AccessJournal ArticleDOI

Early anaerobic metabolisms.

Reads0
Chats0
TLDR
It is calculated, consistent with the carbon isotope record and other considerations of the carbon cycle, that marine rates of primary production at this time were probably an order of magnitude (or more) less than today.
Abstract
Before the advent of oxygenic photosynthesis, the biosphere was driven by anaerobic metabolisms. We catalogue and quantify the source strengths of the most probable electron donors and electron acceptors that would have been available to fuel early-Earth ecosystems. The most active ecosystems were probably driven by the cycling of H 2 and Fe 2+ through primary production conducted by anoxygenic phototrophs. Interesting and dynamic ecosystems would have also been driven by the microbial cycling of sulphur and nitrogen species, but their activity levels were probably not so great. Despite the diversity of potential early ecosystems, rates of primary production in the early-Earth anaerobic biosphere were probably well below those rates observed in the marine environment. We shift our attention to the Earth environment at 3.8 Gyr ago, where the earliest marine sediments are preserved. We calculate, consistent with the carbon isotope record and other considerations of the carbon cycle, that marine rates of primary production at this time were probably an order of magnitude (or more) less than today. We conclude that the flux of reduced species to the Earth surface at this time may have been sufficient to drive anaerobic ecosystems of sufficient activity to be consistent with the carbon isotope record. Conversely, an ecosystem based on oxygenic photosynthesis was also possible with complete removal of the oxygen by reaction with reduced species from the mantle.

read more

Citations
More filters
Journal ArticleDOI

The evolution and future of earth's nitrogen cycle

TL;DR: Humans must modify their behavior or risk causing irreversible changes to life on Earth, as the damage done by humans to the nitrogen economy of the planet will persist for decades, possibly centuries, if active intervention and careful management strategies are not initiated.
Journal ArticleDOI

Potential impacts of global climate change on freshwater fisheries

TL;DR: Model predictions indicate that global climate change will continue even if greenhouse gas emissions decrease or cease, and proactive management strategies such as removing other stressors from natural systems will be necessary to sustain freshwater fisheries.
Journal ArticleDOI

Superoxide dismutases and superoxide reductases

TL;DR: The SORs and three very different types of SOD enzymes are redox-active metalloenzymes that have evolved entirely independently from one another for the purpose of lowering superoxide concentrations, suggesting that, from the start of the rise of O2 on Earth, the chemistry of superoxide has been an important factor during evolution.
Journal ArticleDOI

A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice.

TL;DR: It is demonstrated that the Sub1 region haplotype determines ethylene- and GA-mediated metabolic and developmental responses to submergence through differential expression of Sub1A and Sub1C, which dampens ethylene production and GA responsiveness.
Journal ArticleDOI

A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring.

TL;DR: The enriched AOA, which is provisionally classified as “Candidatus Nitrososphaera gargensis,” is the first described thermophilic ammonia oxidizer and the first member of the crenarchaeotal group I.1b for which ammonium oxidation has been verified on a cellular level.
References
More filters
Book

Bergey's Manual of Systematic Bacteriology

TL;DR: BCL3 and Sheehy cite Bergey's manual of determinative bacteriology of which systematic bacteriology, first edition, is an expansion.
Journal ArticleDOI

Primary Production of the Biosphere: Integrating Terrestrial and Oceanic Components

TL;DR: Integrating conceptually similar models of the growth of marine and terrestrial primary producers yielded an estimated global net primary production of 104.9 petagrams of carbon per year, with roughly equal contributions from land and oceans.
Book

Tracers in the Sea

Journal ArticleDOI

Energetics of syntrophic cooperation in methanogenic degradation.

TL;DR: S syntrophically fermenting bacteria synthesize ATP by substrate-level phosphorylation and reinvest part of the ATP-bound energy into reversed electron transport processes, to release the electrons at a redox level accessible by the partner bacteria and to balance their energy budget.
Journal ArticleDOI

Phylogenetic Classification and the Universal Tree

TL;DR: Molecular phylogeneticists will have failed to find the “true tree,” not because their methods are inadequate or because they have chosen the wrong genes, but because the history of life cannot properly be represented as a tree.
Related Papers (5)