scispace - formally typeset
Journal ArticleDOI

Embryonic Stem Cell-Derived Glial Precursors: A Source of Myelinating Transplants

Reads0
Chats0
TLDR
Transplantation in a rat model of a human myelin disease shows that ES cell-derived precursors interact with host neurons and efficiently myelinate axons in brain and spinal cord.
Abstract
Self-renewing, totipotent embryonic stem (ES) cells may provide a virtually unlimited donor source for transplantation. A protocol that permits the in vitro generation of precursors for oligodendrocytes and astrocytes from ES cells was devised. Transplantation in a rat model of a human myelin disease shows that these ES cell-derived precursors interact with host neurons and efficiently myelinate axons in brain and spinal cord. Thus, ES cells can serve as a valuable source of cell type-specific somatic precursors for neural transplantation.

read more

Citations
More filters
Journal ArticleDOI

A Bivalent Chromatin Structure Marks Key Developmental Genes in Embryonic Stem Cells

TL;DR: It is proposed that bivalent domains silence developmental genes in ES cells while keeping them poised for activation, highlighting the importance of DNA sequence in defining the initial epigenetic landscape and suggesting a novel chromatin-based mechanism for maintaining pluripotency.
Journal ArticleDOI

Mammalian neural stem cells.

TL;DR: Before the full potential of neural stem cells can be realized, the authors need to learn what controls their proliferation, as well as the various pathways of differentiation available to their daughter cells.
Journal ArticleDOI

In vitro differentiation of transplantable neural precursors from human embryonic stem cells

TL;DR: In vitro differentiation, enrichment, and transplantation of neural precursor cells from human ES cells are described, depicting humanES cells as a source of transplantable neural precursors for possible nervous system repair.
Journal ArticleDOI

Direct isolation of human central nervous system stem cells

TL;DR: Upon transplantation into brains of immunodeficient neonatal mice, the sorted/expanded hCNS-SC showed potent engraftment, proliferation, migration, and neural differentiation.
Journal ArticleDOI

Isolation of multipotent adult stem cells from the dermis of mammalian skin

TL;DR: The isolation of stem cells from juvenile and adult rodent skin is described and it is proposed that these cells represent a novel multipotent adult stem cell and suggest that skin may provide an accessible, autologous source of stem cell for transplantation.
References
More filters
Journal ArticleDOI

Embryonic Stem Cell Lines Derived from Human Blastocysts

TL;DR: Human blastocyst-derived, pluripotent cell lines are described that have normal karyotypes, express high levels of telomerase activity, and express cell surface markers that characterize primate embryonic stem cells but do not characterize other early lineages.
Journal ArticleDOI

Establishment in culture of pluripotential cells from mouse embryos

TL;DR: The establishment in tissue culture of pluripotent cell lines which have been isolated directly from in vitro cultures of mouse blastocysts are reported, able to differentiate either in vitro or after innoculation into a mouse as a tumour in vivo.
Journal ArticleDOI

Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells

TL;DR: In this article, the authors described the establishment directly from normal preimplantation mouse embryos of a cell line that forms teratocarcinomas when injected into mice and demonstrated the pluripotency of these embryonic stem cells by the observation that subclonal cultures, derived from isolated single cells, can differentiate into a wide variety of cell types.
Journal ArticleDOI

Viable offspring derived from fetal and adult mammalian cells

TL;DR: The birth of lambs from differentiated fetal and adult cells confirms that differentiation of that cell did not involve the irreversible modification of genetic material required for development to term and reinforces previous speculation that by inducing donor cells to become quiescent it will be possible to obtain normal development from a wide variety of differentiated cells.
Journal ArticleDOI

Targeted mutation of the DNA methyltransferase gene results in embryonic lethality.

TL;DR: Results indicate that while a 3-fold reduction in levels of genomic m5C has no detectable effect on the viability or proliferation of ES cells in culture, a similar reduction of DNA methylation in embryos causes abnormal development and embryonic lethality.
Related Papers (5)