scispace - formally typeset
Search or ask a question

Showing papers in "Nature Cell Biology in 2001"


Journal ArticleDOI
TL;DR: It is concluded that the activation of the Akt/mTOR pathway and its downstream targets, p70S6K and PHAS-1/4E-BP1, is requisitely involved in regulating skeletal muscle fibre size, and that activation of this pathway can oppose muscle atrophy induced by disuse.
Abstract: Skeletal muscles adapt to changes in their workload by regulating fibre size by unknown mechanisms. The roles of two signalling pathways implicated in muscle hypertrophy on the basis of findings in vitro, Akt/mTOR (mammalian target of rapamycin) and calcineurin/NFAT (nuclear factor of activated T cells), were investigated in several models of skeletal muscle hypertrophy and atrophy in vivo. The Akt/mTOR pathway was upregulated during hypertrophy and downregulated during muscle atrophy. Furthermore, rapamycin, a selective blocker of mTOR, blocked hypertrophy in all models tested, without causing atrophy in control muscles. In contrast, the calcineurin pathway was not activated during hypertrophy in vivo, and inhibitors of calcineurin, cyclosporin A and FK506 did not blunt hypertrophy. Finally, genetic activation of the Akt/mTOR pathway was sufficient to cause hypertrophy and prevent atrophy in vivo, whereas genetic blockade of this pathway blocked hypertrophy in vivo. We conclude that the activation of the Akt/mTOR pathway and its downstream targets, p70S6K and PHAS-1/4E-BP1, is requisitely involved in regulating skeletal muscle fibre size, and that activation of the Akt/mTOR pathway can oppose muscle atrophy induced by disuse.

2,439 citations


Journal ArticleDOI
TL;DR: The results put clear constraints on the possible molecular mechanisms for the mechanosensory response of focal adhesions to applied force.
Abstract: Mechanical forces play a major role in the regulation of cell adhesion and cytoskeletal organization. In order to explore the molecular mechanism underlying this regulation, we have investigated the relationship between local force applied by the cell to the substrate and the assembly of focal adhesions. A novel approach was developed for real-time, high-resolution measurements of forces applied by cells at single adhesion sites. This method combines micropatterning of elastomer substrates and fluorescence imaging of focal adhesions in live cells expressing GFPtagged vinculin. Local forces are correlated with the orientation, total fluorescence intensity and area of the focal adhesions, indicating a constant stress of 5.5 ± 2 nNμm-2. The dynamics of the force-dependent modulation of focal adhesions were characterized by blocking actomyosin contractility and were found to be on a time scale of seconds. The results put clear constraints on the possible molecular mechanisms for the mechanosensory response of focal adhesions to applied force.

2,161 citations


Journal ArticleDOI
TL;DR: The isolation of stem cells from juvenile and adult rodent skin is described and it is proposed that these cells represent a novel multipotent adult stem cell and suggest that skin may provide an accessible, autologous source of stem cell for transplantation.
Abstract: We describe here the isolation of stem cells from juvenile and adult rodent skin. These cells derive from the dermis, and clones of individual cells can proliferate and differentiate in culture to produce neurons, glia, smooth muscle cells and adipocytes. Similar precursors that produce neuron-specific proteins upon differentiation can be isolated from adult human scalp. Because these cells (termed SKPs for skin-derived precursors) generate both neural and mesodermal progeny, we propose that they represent a novel multipotent adult stem cell and suggest that skin may provide an accessible, autologous source of stem cells for transplantation.

1,699 citations


Journal ArticleDOI
TL;DR: It is shown that Akt promotes hypertrophy by activating downstream signalling pathways previously implicated in activating protein synthesis: the pathways downstream of mammalian target of rapamycin (mTOR) and the pathway activated by phosphorylating and thereby inhibiting glycogen synthase kinase 3 (GSK3).
Abstract: Skeletal muscle is composed of multinucleated fibres, formed after the differentiation and fusion of myoblast precursors. Skeletal muscle atrophy and hypertrophy refer to changes in the diameter of these pre-existing muscle fibres. The prevention of atrophy would provide an obvious clinical benefit; insulin-like growth factor 1 (IGF-1) is a promising anti-atrophy agent because of its ability to promote hypertrophy. However, the signalling pathways by which IGF-1 promotes hypertrophy remain unclear, with roles suggested for both the calcineurin/NFAT (nuclear factor of activated T cells) pathway and the PtdIns-3-OH kinase (PI(3)K)/Akt pathway. Here we employ a battery of approaches to examine these pathways during the hypertrophic response of cultured myotubes to IGF-1. We report that Akt promotes hypertrophy by activating downstream signalling pathways previously implicated in activating protein synthesis: the pathways downstream of mammalian target of rapamycin (mTOR) and the pathway activated by phosphorylating and thereby inhibiting glycogen synthase kinase 3 (GSK3). In contrast, in addition to demonstrating that calcineurin does not mediate IGF-1-induced hypertrophy, we show that IGF-1 unexpectedly acts via Akt to antagonize calcineurin signalling during myotube hypertrophy.

1,491 citations


Journal ArticleDOI
TL;DR: Intriguingly, most organelle-specific death responses finally lead to either MMP or caspase activation, both of which might function as central integrators of the death pathway, thereby streamlining lysosome-, Golgi- or ER-elicited responses into a common pathway.
Abstract: Nuclear DNA damage and ligation of plasma-membrane death receptors have long been recognized as initial triggers of apoptosis that induce mitochondrial membrane permeabilization (MMP) and/or the direct activation of caspases. Accumulating evidence suggests that other organelles, including the endoplasmic reticulum (ER), lysosomes and the Golgi apparatus, are also major points of integration of pro-apoptotic signalling or damage sensing. Each organelle possesses sensors that detect specific alterations, locally activates signal transduction pathways and emits signals that ensure inter-organellar cross-talk. The ER senses local stress through chaperones, Ca2+-binding proteins and Ca2+ release channels, which might transmit ER Ca2+ responses to mitochondria. The ER also contains several Bcl-2-binding proteins, and Bcl-2 has been reported to exert part of its cytoprotective effect within the ER. Upon membrane destabilization, lysosomes release cathepsins that are endowed with the capacity of triggering MMP. The Golgi apparatus constitutes a privileged site for the generation of the pro-apoptotic mediator ganglioside GD3, facilitates local caspase-2 activation and might serve as a storage organelle for latent death receptors. Intriguingly, most organelle-specific death responses finally lead to either MMP or caspase activation, both of which might function as central integrators of the death pathway, thereby streamlining lysosome-, Golgi- or ER-elicited responses into a common pathway.

1,443 citations


Journal ArticleDOI
TL;DR: Protein S-nitrosylation is established as a physiological signalling mechanism for neuronally generated NO in mice harbouring a genomic deletion of neuronal NO synthase (nNOS).
Abstract: Nitric oxide (NO) has been linked to numerous physiological and pathophysiological events that are not readily explained by the well established effects of NO on soluble guanylyl cyclase. Exogenous NO S-nitrosylates cysteine residues in proteins, but whether this is an important function of endogenous NO is unclear. Here, using a new proteomic approach, we identify a population of proteins that are endogenously S-nitrosylated, and demonstrate the loss of this modification in mice harbouring a genomic deletion of neuronal NO synthase (nNOS). Targets of NO include metabolic, structural and signalling proteins that may be effectors for neuronally generated NO. These findings establish protein S-nitrosylation as a physiological signalling mechanism for nNOS.

1,386 citations


Journal ArticleDOI
TL;DR: The results demonstrate the existence of a two-step transport pathway from plasma-membrane caveolae, through an intermediate organelle (termed the caveosome), to the ER, which bypasses endosomes and the Golgi complex, and is part of the productive infectious route used by SV40.
Abstract: Simian virus 40 (SV40) is unusual among animal viruses in that it enters cells through caveolae, and the internalized virus accumulates in a smooth endoplasmic reticulum (ER) compartment Using video-enhanced, dual-colour, live fluorescence microscopy, we show the uptake of individual virus particles in CV-1 cells After associating with caveolae, SV40 leaves the plasma membrane in small, caveolin-1-containing vesicles It then enters larger, peripheral organelles with a non-acidic pH Although rich in caveolin-1, these organelles do not contain markers for endosomes, lysosomes, ER or Golgi, nor do they acquire ligands of clathrin-coated vesicle endocytosis After several hours in these organelles, SV40 is sorted into tubular, caveolin-free membrane vesicles that move rapidly along microtubules, and is deposited in perinuclear, syntaxin 17-positive, smooth ER organelles The microtubule-disrupting agent nocodazole inhibits formation and transport of these tubular carriers, and blocks viral infection Our results demonstrate the existence of a two-step transport pathway from plasma-membrane caveolae, through an intermediate organelle (termed the caveosome), to the ER This pathway bypasses endosomes and the Golgi complex, and is part of the productive infectious route used by SV40

1,289 citations


Journal ArticleDOI
TL;DR: It is shown that the Rho effector protein ROCK I, which contributes to phosphorylation of myosin light-chains, myOSin ATPase activity and coupling of actin–myosin filaments to the plasma membrane, is cleaved during apoptosis to generate a truncated active form.
Abstract: The execution phase of apoptosis is characterized by marked changes in cell morphology that include contraction and membrane blebbing. The actin-myosin system has been proposed to be the source of contractile force that drives bleb formation, although the biochemical pathway that promotes actin-myosin contractility during apoptosis has not been identified. Here we show that the Rho effector protein ROCK I, which contributes to phosphorylation of myosin light-chains, myosin ATPase activity and coupling of actin-myosin filaments to the plasma membrane, is cleaved during apoptosis to generate a truncated active form. The activity of ROCK proteins is both necessary and sufficient for formation of membrane blebs and for re-localization of fragmented DNA into blebs and apoptotic bodies.

1,238 citations


Journal ArticleDOI
TL;DR: It is shown that HER-2/neu-mediated cell growth requires the activation of Akt, which associates with p 21Cip1/WAF1 and phosphorylates it at threonine 145, resulting in cytoplasmic localization of p21Cip 1/Waf1.
Abstract: Amplification or overexpression of HER-2/neu in cancer cells confers resistance to apoptosis and promotes cell growth. The cellular localization of p21Cip1/WAF1 has been proposed to be critical either in promoting cell survival or in inhibiting cell growth. Here we show that HER-2/neu-mediated cell growth requires the activation of Akt, which associates with p21Cip1/WAF1 and phosphorylates it at threonine 145, resulting in cytoplasmic localization of p21Cip1/WAF1. Furthermore, blocking the Akt pathway with a dominant-negative Akt mutant restores the nuclear localization and cell-growth-inhibiting activity of p21Cip1/WAF1. Our results indicate that HER-2/neu induces cytoplasmic localization of p21Cip1/WAF1 through activation of Akt to promote cell growth, which may have implications for the oncogenic activity of HER-2/neu and Akt.

1,093 citations


Journal ArticleDOI
TL;DR: It is demonstrated that nuclear EGFR is strongly correlated with highly proliferating activities of tissues and associated with promoter region of cyclin D1 in vivo, suggesting that EGFR might function as a transcription factor to activate genes required for highly proliferationating activities.
Abstract: Epidermal growth factor receptor (EGFR) has been detected in the nucleus in many tissues and cell lines. However, the potential functions of nuclear EGFR have largely been overlooked. Here we demonstrate that nuclear EGFR is strongly correlated with highly proliferating activities of tissues. When EGFR was fused to the GAL4 DNA-binding domain, we found that the carboxy terminus of EGFR contained a strong transactivation domain. Moreover, the receptor complex bound and activated AT-rich consensus-sequence-dependent transcription, including the consensus site in cyclin D1 promoter. By using chromatin immunoprecipitation assays, we further demonstrated that nuclear EGFR associated with promoter region of cyclin D1 in vivo. EGFR might therefore function as a transcription factor to activate genes required for highly proliferating activities.

1,051 citations


Journal ArticleDOI
TL;DR: It is shown that CHIP abolishes the steroid-binding activity and transactivation potential of the glucocorticoid receptor, a well-characterized Hsp90 substrate, even though it has little effect on its synthesis.
Abstract: To maintain quality control in cells, mechanisms distinguish among improperly folded peptides, mature and functional proteins, and proteins to be targeted for degradation. The molecular chaperones, including heat-shock protein Hsp90, have the ability to recognize misfolded proteins and assist in their conversion to a functional conformation. Disruption of Hsp90 heterocomplexes by the Hsp90 inhibitor geldanamycin leads to substrate degradation through the ubiquitin-proteasome pathway, implicating this system in protein triage decisions. We previously identified CHIP (carboxyl terminus of Hsc70-interacting protein) to be an interaction partner of Hsc70 (ref. 4). CHIP also interacts directly with a tetratricopeptide repeat acceptor site of Hsp90, incorporating into Hsp90 heterocomplexes and eliciting release of the regulatory cofactor p23. Here we show that CHIP abolishes the steroid-binding activity and transactivation potential of the glucocorticoid receptor, a well-characterized Hsp90 substrate, even though it has little effect on its synthesis. Instead, CHIP induces ubiquitylation of the glucocorticoid receptor and degradation through the proteasome. By remodelling Hsp90 heterocomplexes to favour substrate degradation, CHIP modulates protein triage decisions that regulate the balance between protein folding and degradation for chaperone substrates.

Journal ArticleDOI
TL;DR: This study indicates that blocking the Akt pathway mediated by HER-2/neu would increase the cytotoxic effect of DNA-damaging drugs in tumour cells with wild-type p53.
Abstract: HER-2/neu amplification or overexpression can make cancer cells resistant to apoptosis and promotes their growth. p53 is crucial in regulating cell growth and apoptosis, and is often mutated or deleted in many types of tumour. Moreover, many tumours with a wild-type gene for p53 do not have normal p53 function, suggesting that some oncogenic signals suppress the function of p53. In this study, we show that HER-2/neu-mediated resistance to DNA-damaging agents requires the activation of Akt, which enhances MDM2-mediated ubiquitination and degradation of p53. Akt physically associates with MDM2 and phosphorylates it at Ser166 and Ser186. Phosphorylation of MDM2 enhances its nuclear localization and its interaction with p300, and inhibits its interaction with p19ARF, thus increasing p53 degradation. Our study indicates that blocking the Akt pathway mediated by HER-2/neu would increase the cytotoxic effect of DNA-damaging drugs in tumour cells with wild-type p53.

Journal ArticleDOI
TL;DR: Activation of ROCK I by caspase-3 seems to be responsible for bleb formation in apoptotic cells.
Abstract: Increased phosphorylation of myosin light chain (MLC) is necessary for the dynamic membrane blebbing that is observed at the onset of apoptosis. Here we identify ROCK I, an effector of the small GTPase Rho, as a new substrate for caspases. ROCK I is cleaved by caspase-3 at a conserved DETD1113/G sequence and its carboxy-terminal inhibitory domain is removed, resulting in deregulated and constitutive kinase activity. ROCK proteins are known to regulate MLC-phosphorylation, and apoptotic cells exhibit a gradual increase in levels of phosphorylated MLC concomitant with ROCK I cleavage. This phosphorylation, as well as membrane blebbing, is abrogated by inhibition of caspases or ROCK proteins, but both processes are independent of Rho activity. We also show that expression of active truncated ROCK I induces cell blebbing. Thus, activation of ROCK I by caspase-3 seems to be responsible for bleb formation in apoptotic cells.

Journal ArticleDOI
TL;DR: The data indicate that Hsp70 can inhibit apoptosis by interfering with target proteins other than Apaf-1, one of which is AIF, which is a mitochondrial intermembrane flavoprotein.
Abstract: Heat-shock protein 70 (Hsp70) has been reported to block apoptosis by binding apoptosis protease activating factor-1 (Apaf-1), thereby preventing constitution of the apoptosome, the Apaf-1/cytochrome c/caspase-9 activation complex [1,2]. Here we show that overexpression of Hsp70 protects Apaf-1-/- cells against death induced by serum withdrawal, indicating that Apaf-1 is not the only target of the anti-apoptotic action of Hsp70. We investigated the effect of Hsp70 on apoptosis mediated by the caspase-independent death effector apoptosis inducing factor (AIF), which is a mitochondrial intermembrane flavoprotein [3,4]. In a cell-free system, Hsp70 prevented the AIF-induced chromatin condensation of purified nuclei. Hsp70 specifically interacted with AIF, as shown by ligand blots and co-immunoprecipitation. Cells overexpressing Hsp70 were protected against the apoptogenic effects of AIF targeted to the extramitochondrial compartment. In contrast, an anti-sense Hsp70 complementary DNA, which reduced the expression of endogenous Hsp70, increased sensitivity to the lethal effect of AIF. The ATP-binding domain of Hsp70 seemed to be dispensable for inhibiting cell death induced by serum withdrawal, AIF binding and AIF inhibition, although it was required for Apaf-1 binding. Together, our data indicate that Hsp70 can inhibit apoptosis by interfering with target proteins other than Apaf-1, one of which is AIF.

Journal ArticleDOI
TL;DR: It is shown that CHIP functions with Hsc70 to sense the folded state of CFTR and targets aberrant forms for proteasomal degradation by promoting their ubiquitination.
Abstract: The folding of both wild-type and mutant forms of the cystic-fibrosis transmembrane-conductance regulator (CFTR), a plasma-membrane chloride-ion channel, is inefficient. Most nascent CFTR is retained in the endoplasmic reticulum and degraded by the ubiquitin proteasome pathway. Aberrant folding and defective trafficking of CFTRDeltaF508 is the principal cause of cystic fibrosis, but how the endoplasmic-reticulum quality-control system targets CFTR for degradation remains unknown. CHIP is a cytosolic U-box protein that interacts with Hsc70 through a set of tetratricorepeat motifs. The U-box represents a modified form of the ring-finger motif that is found in ubiquitin ligases and that defines the E4 family of polyubiquitination factors. Here we show that CHIP functions with Hsc70 to sense the folded state of CFTR and targets aberrant forms for proteasomal degradation by promoting their ubiquitination. The U-box appeared essential for this process because overexpresion of CHIPDeltaU-box inhibited the action of endogenous CHIP and blocked CFTR ubiquitination and degradation. CHIP is a co-chaperone that converts Hsc70 from a protein-folding machine into a degradation factor that functions in endoplasmic-reticulum quality control.

Journal ArticleDOI
TL;DR: Unlike Wnt antagonists, which exert their effects by molecular mimicry of Fz or Wnt sequestration through other mechanisms, Dkk-1 specifically inhibits canonical Wnt signalling by binding to the LRP6 component of the receptor complex.
Abstract: Wnt signalling has an important role in cell fate determination, tissue patterning and tumorigenesis. Secreted antagonists of Wnt include Frizzled (Fz)-related proteins (FRPs), Cerberus, Wnt inhibitory factor (WIF) and Dickkopf (Dkk). FRPs, Cerberus and WIF have all been shown to act by binding and sequestering Wnt. We report a novel mechanism of Wnt-signalling inhibition by human Dkk-1. Dkk-1 demonstrated no interaction with Wnt but bound a single cell surface site with high affinity (K(D) = 0.39 nM). Its receptor was detectable in a complex with a relative molecular mass of 240,000 (M(r) 240K) with [(125)I] Dkk-1 by covalent affinity cross-linking. Wnt signalling through beta-catenin is mediated by the Fz receptor and a recently identified low-density-lipoprotein-receptor-related co-receptor, LRP6/Arrow. Overproduction of the 200K LRP6 protein, but not of Fz, strikingly increased Dkk-1 binding as well as the amount of the 240K cross-linked complex, which was shown to be composed of Dkk-1 and LRP6. Moreover, Dkk-1 function was completely independent of Fz but LRP6 dramatically interfered with the Dkk-1 inhibition of Wnt signalling. Thus, unlike Wnt antagonists, which exert their effects by molecular mimicry of Fz or Wnt sequestration through other mechanisms, Dkk-1 specifically inhibits canonical Wnt signalling by binding to the LRP6 component of the receptor complex.

Journal ArticleDOI
TL;DR: It is concluded that loss of APC sequences that lie C-terminal to the β-catenin regulatory domain contributes to chromosomal instability in colorectal cancer.
Abstract: Two forms of genetic instability have been described in colorectal cancer: microsatellite instability and chromosomal instability. Microsatellite instability results from mutations in mismatch repair genes; chromosomal instability is the hallmark of many colorectal cancers, although it is not completely understood at the molecular level. As truncations of the Adenomatous Polyposis Coli (APC) gene are found in most colorectal tumours, we thought that mutations in APC might be responsible for chromosomal instability. To test this hypothesis, we examined mouse embryonic stem (ES) cells homozygous for Min (multiple intestinal neoplasia) or Apc1638T alleles. Here we show that Apc mutant ES cells display extensive chromosome and spindle aberrations, providing genetic evidence for a role of APC in chromosome segregation. Consistent with this, APC accumulates at the kinetochore during mitosis. Apc mutant cells form mitotic spindles with an abundance of microtubules that inefficiently connect with kinetochores. This phenotype is recapitulated by the induced expression of a 253-amino-acid carboxy-terminal fragment of APC in microsatellite unstable colorectal cancer cells. We conclude that loss of APC sequences that lie C-terminal to the beta-catenin regulatory domain contributes to chromosomal instability in colorectal cancer.

Journal ArticleDOI
TL;DR: The potential of FRAP to study protein dynamics and activity within a single living cell is reviewed and most standard confocal laser-scanning microscopes equipped with photobleaching protocols are reviewed.
Abstract: Experiments with fluorescence recovery after photobleaching (FRAP) started 30 years ago to visualize the lateral mobility and dynamics of fluorescent proteins in living cells. Its popularity increased when non-invasive fluorescent tagging became possible with the green fluorescent protein (GFP). Many researchers use GFP to study the localization of fusion proteins in fixed or living cells, but the same fluorescent proteins can also be used to study protein mobility in living cells. Here we review the potential of FRAP to study protein dynamics and activity within a single living cell. These measurements can be made with most standard confocal laser-scanning microscopes equipped with photobleaching protocols.

Journal ArticleDOI
TL;DR: It is shown that E2F1 directly regulates the expression of Apaf-1, the gene for apoptosis protease-activating factor 1, which provides a direct link between the deregulation of the pRB pathway and apoptosis.
Abstract: Loss of function of the retinoblastoma protein, pRB, leads to lack of differentiation, hyperproliferation and apoptosis. Inactivation of pRB results in deregulated E2F activity, which in turn induces entry to S-phase and apoptosis. Induction of apoptosis by either the loss of pRB or the deregulation of E2F activity occurs via both p53-dependent and p53-independent mechanisms. The mechanism by which E2F induces apoptosis is still unclear. Here we show that E2F1 directly regulates the expression of Apaf-1, the gene for apoptosis protease-activating factor 1. These results provide a direct link between the deregulation of the pRB pathway and apoptosis. Furthermore, because the pRB pathway is functionally inactivated in most cancers, the identification of Apaf-1 as a transcriptional target for E2F might explain the increased sensitivity of tumour cells to chemotherapy. We also show that, independently of the pRB pathway, Apaf-1 is a direct transcriptional target of p53, suggesting that p53 might sensitize cells to apoptosis by increasing Apaf-1 levels.

Journal ArticleDOI
TL;DR: The results show that mDia is sufficient to generate and orient stable microtubules, and indicate that Dia-related formins are part of a conserved pathway that regulates the dynamics of microtubule ends.
Abstract: Rho-GTPase stabilizes microtubules that are oriented towards the leading edge in serum-starved 3T3 fibroblasts through an unknown mechanism. We used a Rho-effector domain screen to identify mDia as a downstream Rho effector involved in microtubule stabilization. Constitutively active mDia or activation of endogenous mDia with the mDia-autoinhibitory domain stimulated the formation of stable microtubules that were capped and oriented towards the wound edge. mDia co-localized with stable microtubules when overexpressed and associated with microtubules in vitro. Rho kinase was not necessary for the formation of stable microtubules. Our results show that mDia is sufficient to generate and orient stable microtubules, and indicate that Dia-related formins are part of a conserved pathway that regulates the dynamics of microtubule ends.

Journal ArticleDOI
TL;DR: These findings provide a molecular foundation to understand the role of PI(3)K in regulating neutrophil function and inflammation, and to identify PX domains as specific phosphoinositide-binding modules involved in signal transduction events in eukaryotic cells.
Abstract: PX domains are found in a variety of proteins that associate with cell membranes, but their molecular function has remained obscure. We show here that the PX domains in p47phox and p40phox subunits of the phagocyte NADPH oxidase bind to phosphatidylinositol-3,4-bisphosphate (PtdIns(3,4)P(2)) and phosphatidylinositol-3-phosphate (PtdIns(3)P), respectively. We also show that an Arg-to-Gln mutation in the PX domain of p47phox, which is found in patients with chronic granulomatous disease, eliminates phosphoinositide binding, as does the analogous mutation in the PX domain of p40phox. The PX domain of p40phox localizes specifically to PtdIns(3)P-enriched early endosomes, and this localization is disrupted by inhibition of phosphoinositide-3-OH kinase (PI(3)K) or by the Arg-to-Gln point mutation. These findings provide a molecular foundation to understand the role of PI(3)K in regulating neutrophil function and inflammation, and to identify PX domains as specific phosphoinositide-binding modules involved in signal transduction events in eukaryotic cells.

Journal ArticleDOI
TL;DR: The results indicate that ErbB receptors differ in their ability to induce early stages of mammary carcinogenesis in vitro and this three-dimensional model system can reveal biological activities of oncogenes that cannot be examined in vitro in standard transformation assays.
Abstract: Both ErbB1 and ErbB2 are overexpressed or amplified in breast tumours. To examine the effects of activating ErbB receptors in a context that mimics polarized epithelial cells in vivo, we activated ErbB1 and ErbB2 homodimers in preformed, growth-arrested mammary acini cultured in three-dimensional basement membrane gels. Activation of ErbB2, but not that of ErbB1, led to a reinitiation of cell proliferation and altered the properties of mammary acinar structures. These altered structures share several properties with early-stage tumours, including a loss of proliferative suppression, an absence of lumen, retention of the basement membrane and a lack of invasive properties. ErbB2 activation also disrupted tight junctions and the cell polarity of polarized epithelia, whereas ErbB1 activation did not have any effect. Our results indicate that ErbB receptors differ in their ability to induce early stages of mammary carcinogenesis in vitro and this three-dimensional model system can reveal biological activities of oncogenes that cannot be examined in vitro in standard transformation assays.

Journal ArticleDOI
TL;DR: The data are consistent with a role for APC in kinetochore–microtubule attachment and suggest that truncations in APC that eliminate microtubule binding may contribute to chromosomal instability in cancer cells.
Abstract: Mutations in the Adenomatous Polyposis Coli (APC) gene are responsible for familial colon cancer and also occur in the early stages of sporadic colon cancer. APC functions in the Wnt signalling pathway to regulate the degradation of beta-catenin (reviewed in refs 1-3). APC also binds to and stabilizes microtubules in vivo and in vitro, localizes to clusters at the ends of microtubules near the plasma membrane of interphase cells, and is an important regulator of cytoskeletal function. Here we show that cells carrying a truncated APC gene (Min) are defective in chromosome segregation. Moreover, during mitosis, APC localizes to the ends of microtubules embedded in kinetochores and forms a complex with the checkpoint proteins Bub1 and Bub3. In vitro, APC is a high-affinity substrate for Bub kinases. Our data are consistent with a role for APC in kinetochore-microtubule attachment and suggest that truncations in APC that eliminate microtubule binding may contribute to chromosomal instability in cancer cells.

Journal ArticleDOI
TL;DR: Parallel quantification of large numbers of messenger RNA transcripts using microarray technology promises to provide detailed insight into cellular processes involved in the regulation of gene expression and of the molecular basis and classification of disease.
Abstract: Parallel quantification of large numbers of messenger RNA transcripts using microarray technology promises to provide detailed insight into cellular processes involved in the regulation of gene expression. This should allow new understanding of signalling networks that operate in the cell and of the molecular basis and classification of disease. But can the technology deliver such far-reaching promises?

Journal ArticleDOI
TL;DR: The results indicate that BH3-dependent heterodimerization is the key function of anti-apoptotic Bcl-2 family members and is required for the maintenance of cellular homeostasis.
Abstract: To study the role of the BH3 domain in mediating pro-apoptotic and anti-apoptotic activities of Bcl-2 family members, we identified a series of novel small molecules (BH3Is) that inhibit the binding of the Bak BH3 peptide to Bcl-xL. NMR analyses revealed that BH3Is target the BH3-binding pocket of Bcl-xL. Inhibitors specifically block the BH3-domain-mediated heterodimerization between Bcl-2 family members in vitro and in vivo and induce apoptosis. Our results indicate that BH3-dependent heterodimerization is the key function of anti-apoptotic Bcl-2 family members and is required for the maintenance of cellular homeostasis.

Journal ArticleDOI
TL;DR: A Myc-associated transcription factor, Miz-1, arrests cells in G1 phase and inhibits cyclin D-associated kinase activity and upregulates expression of the cyclin-dependent kinases (CDK) inhibitor p15INK4b by binding to the initiator element of the p15inks4b promoter.
Abstract: Deregulated expression of c-myc can induce cell proliferation in established cell lines and in primary mouse embryonic fibroblasts (MEFs), through a combination of both transcriptional activation and repression by Myc. Here we show that a Myc-associated transcription factor, Miz-1, arrests cells in G1 phase and inhibits cyclin D-associated kinase activity. Miz-1 upregulates expression of the cyclin-dependent kinases (CDK) inhibitor p15INK4b by binding to the initiator element of the p15INK4b promoter. Myc and Max form a complex with Miz-1 at the p15 initiator and inhibit transcriptional activation by Miz-1. Expression of Myc in primary cells inhibits the accumulation of p15INK4b that is associated with cellular senescence; conversely, deletion of c-myc in an established cell line activates p15INK4b expression. Alleles of c-myc that are unable to bind to Miz-1 fail to inhibit accumulation of p15INK4b messenger RNA in primary cells and are, as a consequence, deficient in immortalization.

Journal ArticleDOI
TL;DR: A store-operated Ca2+ current is described in vascular endothelium and it is shown that endothelial cells of mice deficient in TRP4 (also known as CCE1) lack this current, showing that TRP 4 is an indispensable component of store- operated channels in native endothelial Cells and that these channels directly provide an Ca2-entry pathway essentially contributing to the regulation of blood vessel tone.
Abstract: Agonist-induced Ca2+ entry into cells by both store-operated channels and channels activated independently of Ca2+-store depletion has been described in various cell types. The molecular structures of these channels are unknown as is, in most cases, their impact on various cellular functions. Here we describe a store-operated Ca2+ current in vascular endothelium and show that endothelial cells of mice deficient in TRP4 (also known as CCE1) lack this current. As a consequence, agonist-induced Ca2+ entry and vasorelaxation is reduced markedly, showing that TRP4 is an indispensable component of store-operated channels in native endothelial cells and that these channels directly provide an Ca2+-entry pathway essentially contributing to the regulation of blood vessel tone.

Journal ArticleDOI
TL;DR: The studies identify a novel protein determinant that is required for H-ras function, and show that the GTP/GDP state of H-ra determines its lateral segregation on the plasma membrane.
Abstract: Different sites of plasma membrane attachment may underlie functional differences between isoforms of Ras. Here we show that palmitoylation and farnesylation targets H-ras to lipid rafts and caveolae, but that the interaction of H-ras with these membrane subdomains is dynamic. GTP-loading redistributes H-ras from rafts into bulk plasma membrane by a mechanism that requires the adjacent hypervariable region of H-ras. Release of H-ras-GTP from rafts is necessary for efficient activation of Raf. By contrast, K-ras is located outside rafts irrespective of bound nucleotide. Our studies identify a novel protein determinant that is required for H-ras function, and show that the GTP/GDP state of H-ras determines its lateral segregation on the plasma membrane.

Journal ArticleDOI
TL;DR: PDGF-DD is the first known PDGFR-β-specific ligand, and its unique receptor specificity indicates that it may be important for development and pathophysiology in several organs.
Abstract: The term 'platelet-derived growth factor' (PDGF) refers to a family of disulphide-bonded dimeric isoforms that are important for growth, survival and function in several types of connective tissue cell. So far, three different PDGF chains have been identified - the classical PDGF-A and PDGF-B and the recently identified PDGF-C. PDGF isoforms (PDGF-AA, AB, BB and CC) exert their cellular effects by differential binding to two receptor tyrosine kinases. The PDGF alpha-receptor (PDGFR-alpha) binds to all three PDGF chains, whereas the beta-receptor (PDGFR-beta) binds only to PDGF-B. Gene-targeting studies using mice have shown that the genes for PDGF-A and PDGF-B, as well as the two PDGFR genes, are essential for normal development. Furthermore, overexpression of PDGFs is linked to different pathological conditions, including malignancies, atherosclerosis and fibroproliferative diseases. Here we have identify and characterize a fourth member of the PDGF family, PDGF-D. PDGF-D has a two-domain structure similar to PDGF-C and is secreted as a disulphide-linked homodimer, PDGF-DD. Upon limited proteolysis, PDGF-DD is activated and becomes a specific agonistic ligand for PDGFR-beta. PDGF-DD is the first known PDGFR-beta-specific ligand, and its unique receptor specificity indicates that it may be important for development and pathophysiology in several organs.

Journal ArticleDOI
TL;DR: The structural and dynamic properties of the spindle are described, and the current concepts regarding how a bipolar spindle is assembled and how it functions to segregate chromosomes are introduced.
Abstract: In all eukaryotes, a microtubule-based structure known as the spindle is responsible for accurate chromosome segregation during cell division. Spindle assembly and function require localized regulation of microtubule dynamics and the activity of a variety of microtubule-based motor proteins. Recent work has begun to uncover the molecular mechanisms that underpin this process. Here we describe the structural and dynamic properties of the spindle, and introduce the current concepts regarding how a bipolar spindle is assembled and how it functions to segregate chromosomes.