scispace - formally typeset
Journal ArticleDOI

Engineered biomaterials for in situ tissue regeneration

Reads0
Chats0
TLDR
Two biomaterials approaches to control the regenerative capacity of the body for tissue-specific regeneration by modulating the extracellular microenvironment or driving cellular reprogramming are outlined.
Abstract
In situ tissue regeneration harnesses the body’s regenerative potential to control cell functions for tissue repair. The design of biomaterials for in situ tissue engineering requires precise control over biophysical and biochemical cues to direct endogenous cells to the site of injury. These cues are required to induce regeneration by modulating the extracellular microenvironment or driving cellular reprogramming. In this Review, we outline two biomaterials approaches to control the regenerative capacity of the body for tissue-specific regeneration. The first approach includes the use of bioresponsive materials with an ability to direct endogenous cells, including immune cells and progenitor or stem cells, to facilitate tissue healing, integration and regeneration. The second approach focuses on in situ cellular reprogramming via delivery of transcription factors, RNA-based therapeutics, in vivo gene editing and biomaterials-driven epigenetic transformation. In addition, we highlight tools for engineering the next generation of biomaterials to modulate in situ tissue regeneration. Overall, leveraging the regenerative potential of the human body via engineered biomaterials is a simple and effective approach to replace injured or diseased tissues. In situ tissue regeneration harnesses the body’s regenerative potential for tissue repair using engineered biomaterials. In this Review, we outline various biomaterials approaches to control the body’s regenerative capacity for tissue-specific regeneration by modulating the extracellular microenvironment or driving cellular reprogramming.

read more

Citations
More filters

Fusion 如果,爱

小倩, +1 more
TL;DR: Fusion,四个来自上海的大男孩 as discussed by the authors,2008年第一周,他们发行属于

Osteogenic differentiation of bone marrow MSCs by β-tricalcium phosphate stimulating macrophages via BMP2 signalling pathway

TL;DR: Interestingly, when macrophage-conditioned β-TCP extracts were applied to bone marrow mesenchymal stem cells (BMSCs), the osteogenic differentiation of BMSCs was significantly enhanced, indicating the important role of macrophages in biomaterial-induced osteogenesis.
Journal ArticleDOI

Supramolecular Adhesive Hydrogels for Tissue Engineering Applications.

TL;DR: This review is expected to offer comparative views and critical insights to inspire more advanced studies on supramolecular adhesive hydrogels and pave the way for different fields even beyond tissue engineering applications.
Journal ArticleDOI

Inorganic Biomaterials for Regenerative Medicine.

TL;DR: The recent emergence of inorganic biomaterials to harness the innate regenerative potential of the body is discussed, including cell-cell and cell-matrix interactions.
Journal ArticleDOI

Combination Therapy of Killing Diseases by Injectable Hydrogels: From Concept to Medical Applications

TL;DR: The tunable physical properties, excellent biocompatibility, facile preparation, and ease of administration with minimal invasiveness of injectable hydrogels (IHs) have made them excellent candidates to solve the clinical and pharmacological limitations of present systems for multitherapy.
References
More filters
Journal ArticleDOI

Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.

TL;DR: Induction of pluripotent stem cells from mouse embryonic or adult fibroblasts by introducing four factors, Oct3/4, Sox2, c-Myc, and Klf4, under ES cell culture conditions is demonstrated and iPS cells, designated iPS, exhibit the morphology and growth properties of ES cells and express ES cell marker genes.
Journal ArticleDOI

A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.

TL;DR: This study reveals a family of endonucleases that use dual-RNAs for site-specific DNA cleavage and highlights the potential to exploit the system for RNA-programmable genome editing.
Journal ArticleDOI

Multiplex Genome Engineering Using CRISPR/Cas Systems

TL;DR: The type II prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)/Cas adaptive immune system has been shown to facilitate RNA-guided site-specific DNA cleavage as discussed by the authors.
Journal ArticleDOI

Matrix elasticity directs stem cell lineage specification.

TL;DR: Naive mesenchymal stem cells are shown here to specify lineage and commit to phenotypes with extreme sensitivity to tissue-level elasticity, consistent with the elasticity-insensitive commitment of differentiated cell types.

Multiplex Genome Engineering Using CRISPR/Cas Systems

TL;DR: Two different type II CRISPR/Cas systems are engineered and it is demonstrated that Cas9 nucleases can be directed by short RNAs to induce precise cleavage at endogenous genomic loci in human and mouse cells, demonstrating easy programmability and wide applicability of the RNA-guided nuclease technology.
Related Papers (5)