scispace - formally typeset
Journal ArticleDOI

Enhanced dielectric and ferroelectric properties induced by dopamine-modified BaTiO3 nanofibers in flexible poly(vinylidene fluoride-trifluoroethylene) nanocomposites

Reads0
Chats0
TLDR
In this article, BaTiO3 nanofibers with a large aspect ratio prepared via electrospinning and modified by dopamine were used as dielectric fillers in polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE)-based nanocomposites.
Abstract
BaTiO3 nanofibers with a large aspect ratio prepared via electrospinning and modified by dopamine were used as dielectric fillers in poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE)-based nanocomposites. Highly flexible polymer nanocomposite films were fabricated via a simple solution-cast method. Enhanced dielectric permittivities were obtained at a low volume fraction of BaTiO3 nanofibers. The breakdown strength of the polymer nanocomposites was also improved, which is favorable for enhanced ferroelectric properties in the nanocomposites. Pr ∼9.1 μC cm−2 was achieved in the nanocomposites with 10.8 vol% BaTiO3 nanofibers. The improved breakdown strength and enhanced ferroelectric properties are attributed to the combined effect of the surface modification by dopamine, the large aspect ratio of the BaTiO3 nanofibers and the improved crystallinity of the polymer nanocomposites induced by the BaTiO3 nanofibers.

read more

Citations
More filters
Journal ArticleDOI

Recent Progress on Ferroelectric Polymer-Based Nanocomposites for High Energy Density Capacitors: Synthesis, Dielectric Properties, and Future Aspects.

TL;DR: This Review presents a comprehensive review of the use of ferroelectric polymers, especially PVDF and PVDF-based copolymers/blends as potential components in dielectric nanocomposite materials for high energy density capacitor applications.
Journal ArticleDOI

Flexible Nanodielectric Materials with High Permittivity for Power Energy Storage

TL;DR: This review first outlines the crucial issues in the nanodielectric field and then focuses on recent remarkable research developments in the fabrication of FNDMs with special constitutents, molecular structures, and microstructures.
Journal ArticleDOI

Perovskite lead-free dielectrics for energy storage applications

TL;DR: In this paper, the authors summarize the principles of dielectric energy-storage applications, and recent developments on different types of Dielectrics, namely linear dielectrics (LDE), paraelectric, ferroelectrics, and antiferro electrics, focusing on perovskite lead-free dielectors.
Journal ArticleDOI

A review on the dielectric materials for high energy-storage application

TL;DR: In this paper, the state-of-the-art progress on electric energy-storage performance in dielectric materials is summarized, and some general future prospects are also provided from the existed theoretical and experimental results in this work.
Journal ArticleDOI

Interface design for high energy density polymer nanocomposites

TL;DR: This review provides a detailed overview on the latest developments in the design and control of the interface in polymer based composite dielectrics for energy storage applications, along with an overview of existing challenges and practical limitations.
References
More filters
Journal ArticleDOI

Mussel-Inspired Surface Chemistry for Multifunctional Coatings

TL;DR: Inspired by the composition of adhesive proteins in mussels, dopamine self-polymerization is used to form thin, surface-adherent polydopamine films onto a wide range of inorganic and organic materials, including noble metals, oxides, polymers, semiconductors, and ceramics.
Journal ArticleDOI

Physics of thin-film ferroelectric oxides

TL;DR: In this article, the authors introduce the current state of development in the application of ferroelectric thin films for electronic devices and discuss the physics relevant for the performance and failure of these devices.
Journal ArticleDOI

An all-organic composite actuator material with a high dielectric constant

TL;DR: A new class of all-organic field-type EAP composites is reported, which can exhibit high elastic energy densities induced by an electric field of only 13 V µm-1, and could find applications as artificial muscles, ‘smart skins’ for drag reduction, and in microfluidic systems for drug delivery.
Journal ArticleDOI

Dielectric nanocomposites with insulating properties

TL;DR: In this paper, a multi-core model with the far-distance effect, which is closely related to an "interaction zones", has been proposed from consideration of mesoscopic analysis of electrical and chemical structures of an existing interface with finite thickness.
Related Papers (5)