scispace - formally typeset
Journal ArticleDOI

Experimental Investigation of Turbulent Convective Heat Transfer and Pressure Loss of Alumina/Water and Zirconia/Water Nanoparticle Colloids (Nanofluids) in Horizontal Tubes

TLDR
The turbulent convective heat transfer behavior of alumina (Al 2 O 3 ) and zirconia (ZrO 2 ) nanoparticle dispersions in water is investigated experimentally in a flow loop with a horizontal tube test section at various flow rates (9000 <Re < 63,000), temperatures (21-76°C), heat fluxes (up to ∼190 kW/m 2 ), and particle concentrations (0.9-3.6 vol %) as mentioned in this paper.
Abstract
The turbulent convective heat transfer behavior of alumina (Al 2 O 3 ) and zirconia (ZrO 2 ) nanoparticle dispersions in water is investigated experimentally in a flow loop with a horizontal tube test section at various flow rates (9000<Re < 63,000), temperatures (21-76°C), heat fluxes (up to ∼190 kW/m 2 ), and particle concentrations (0.9-3.6 vol % and 0.2-0.9 vol % for Al 2 O 3 and ZrO 2 , respectively). The experimental data are compared to predictions made using the traditional single-phase convective heat transfer and viscous pressure loss correlations for fully developed turbulent flow, Dittus-Boelter, and Blasius/MacAdams, respectively. It is shown that if the measured temperature- and loading-dependent thermal conductivities and viscosities of the nanofluids are used in calculating the Reynolds, Prandtl, and Nusselt numbers, the existing correlations accurately reproduce the convective heat transfer and viscous pressure loss behavior in tubes. Therefore, no abnormal heat transfer enhancement was observed in this study.

read more

Citations
More filters
Journal ArticleDOI

Enhancement of heat transfer using nanofluids—An overview

TL;DR: A colloidal mixture of nano-sized particles in a base fluid, called nanofluids, tremendously enhances the heat transfer characteristics of the original fluid, and is ideally suited for practical applications due to its marvelous characteristics.
Journal ArticleDOI

Small particles, big impacts: A review of the diverse applications of nanofluids

TL;DR: Nanofluids have seen enormous growth in popularity since they were proposed by Choi in 1995 as mentioned in this paper, and there were nearly 700 research articles where the term nanofluid was used in the title, showing rapid growth from 2006 (175) and 2001 (10).
Journal ArticleDOI

Nanofluids: from vision to reality through research

TL;DR: Nanofluids are a new class of nanotechnology-based heat transfer fluids engineered by dispersing and stably suspending nanoparticles with typical length on the order of 1-50 nm in traditional heat transfer fluid.
Journal ArticleDOI

Laminar convective heat transfer and viscous pressure loss of alumina–water and zirconia–water nanofluids

TL;DR: In this paper, heat transfer and viscous pressure loss were investigated for alumina-water and zirconia-water nanofluids in a flow loop with a vertical heated tube.
References
More filters
Book

A Treatise on Electricity and Magnetism

TL;DR: The most influential nineteenth-century scientist for twentieth-century physics, James Clerk Maxwell (1831-1879) demonstrated that electricity, magnetism and light are all manifestations of the same phenomenon: the electromagnetic field as discussed by the authors.
Journal ArticleDOI

Convective Transport in Nanofluids

TL;DR: In this article, the authors considered seven slip mechanisms that can produce a relative velocity between the nanoparticles and the base fluid and concluded that only Brownian diffusion and thermophoresis are important slip mechanisms in nanofluids.
Journal ArticleDOI

Investigation on Convective Heat Transfer and Flow Features of Nanofluids

TL;DR: In this article, an innovative new class of heat transfer fluids can be engineered by suspending metallic nanoparticles in conventional heat-transfer fluids, which are expected to exhibit high thermal conductivities compared to those of currently used heat transfer fluid, and they represent the best hope for enhancing heat transfer.
Journal ArticleDOI

Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles

TL;DR: In this article, the authors used a Brookfield rotating viscometer to measure the viscosities of the dispersed fluids with γ-alumina (Al2O3) and titanium dioxide (TiO2) particles at a 10% volume concentration.
Related Papers (5)