scispace - formally typeset
Journal ArticleDOI

Freestanding Flexible Li2S Paper Electrode with High Mass and Capacity Loading for High-Energy Li–S Batteries

Reads0
Chats0
TLDR
In this paper, an efficient but low-cost strategy for easy production of freestanding flexible Li2S-based paper electrodes with very high mass and capacity loading in terms of in situ carbonthermal reduction of Li2SO4 by electrospinning carbon is reported.
Abstract
Lithium–sulfur (Li–S) batteries are a very appealing power source with extremely high energy density. But the use of a metallic-Li anode causes serious safety hazards, such as short-circuiting and explosion of the cells. Replacing a sulfur cathode with a fully-lithiated lithium sulfide (Li2S) to pair with metallic-Li-free high-capacity anodes paves a feasible way to address this issue. However, the practical utility of Li2S cathodes faces the challenges of poor conductivity, sluggish activation process, and high sensitivity to moisture and oxygen that make electrode production more difficult than dealing with sulfur cathodes. Here, an efficient but low-cost strategy for easy production of freestanding flexible Li2S-based paper electrodes with very high mass and capacity loading in terms of in situ carbonthermal reduction of Li2SO4 by electrospinning carbon is reported. This chemistry enables high loading but strong affinity of ultrafine Li2S nanoparticles in a freestanding conductive carbon-nanofiber network, meanwhile greatly reducing the manufacturing complexity and cost of Li2S cathodes. Benefiting from enhanced structural stability and reaction kinetics, the areal specific capacities of such cathodes can be significantly boosted with less sacrificing of high-rate and cycling capability. This unique Li2S-cathode design can be directly applied for constructing metallic-Li-free or flexible Li–S batteries with high-energy density.

read more

Citations
More filters
Journal ArticleDOI

A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries

TL;DR: This review has summarized the recent progress of flexible Li-S and analogous batteries, and emphasized the importance of cell packaging and flexibility evaluation, and two special flexible battery prototypes of foldable and cable-typeLi-S batteries are highlighted.
Journal ArticleDOI

Self-Templated Formation of Interlaced Carbon Nanotubes Threaded Hollow Co3S4 Nanoboxes for High-Rate and Heat-Resistant Lithium-Sulfur Batteries.

TL;DR: Benefiting from the above advantages, the S@CNTs/Co3S4-NBs cathode shows a significantly improved electrochemical performance in terms of high reversible capacity, good rate performance, and long-term cyclability.
Journal ArticleDOI

Current Status and Future Prospects of Metal–Sulfur Batteries

TL;DR: The current state of the research indicates that lithium-sulfur cells are now at the point of transitioning from laboratory-scale devices to a more practical energy-storage application, and over 450 research articles are summarized to analyze the research progress and explore the electrochemical characteristics, cell-assembly parameters, cell -testing conditions, and materials design.
Journal ArticleDOI

Superhierarchical Cobalt-Embedded Nitrogen-Doped Porous Carbon Nanosheets as Two-in-One Hosts for High-Performance Lithium–Sulfur Batteries

TL;DR: Experimental and theoretical results reveal that stable Co nanoparticles, elaborately encapsulated by N-doped graphitic carbon, can work synergistically with N heteroatoms to reserve the soluble polysulfides and promote the redox reaction kinetics of sulfur cathodes.
Journal ArticleDOI

Structural Design of Lithium–Sulfur Batteries: From Fundamental Research to Practical Application

TL;DR: In this paper, a systematic analysis of various parameters (sulfur loading, electrolyte/Sulfur (E/S) ratio, discharge capacity, discharge voltage, Li excess percentage, sulfur content, etc.) that influence the gravimetric energy density, volumetric energydensity and cost is investigated.
References
More filters
Journal ArticleDOI

Li-O2 and Li-S batteries with high energy storage.

TL;DR: The energy that can be stored in Li-air and Li-S cells is compared with Li-ion; the operation of the cells is discussed, as are the significant hurdles that will have to be overcome if such batteries are to succeed.
Journal ArticleDOI

Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti 3 AlC 2

TL;DR: 2D nanosheets, composed of a few Ti 3 C 2 layers and conical scrolls, produced by the room temperature exfoliation of Ti 3 AlC 2 in hydrofl uoric acid are reported, which opens a door to the synthesis of a large number of other 2D crystals.
Journal ArticleDOI

A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries

TL;DR: In this paper, the authors report the feasibility to approach such capacities by creating highly ordered interwoven composites, where conductive mesoporous carbon framework precisely constrains sulphur nanofiller growth within its channels and generates essential electrical contact to the insulating sulphur.
Journal ArticleDOI

Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism

TL;DR: This work shows a novel mechanism that can fundamentally alter dendrite formation in lithium-ion batteries as well as other metal batteries and transform the surface uniformity of coatings deposited in many general electrodeposition processes.
Journal ArticleDOI

Positive Electrode Materials for Li-Ion and Li-Batteries†

TL;DR: In this article, positive electrodes for Li-ion and lithium batteries have been under intense scrutiny since the advent of the Li ion cell in 1991, and a growing interest in developing Li−sulfur and Li−air batteries that have the potential for vastly increased capacity and energy density, which is needed to power large scale systems.
Related Papers (5)