scispace - formally typeset
Journal ArticleDOI

Graphene-Based Ultracapacitors

TLDR
CMG materials are made from 1-atom thick sheets of carbon, functionalized as needed, and here their performance in an ultracapacitor cell is demonstrated, illustrating the exciting potential for high performance, electrical energy storage devices based on this new class of carbon material.
Abstract
The surface area of a single graphene sheet is 2630 m2/g, substantially higher than values derived from BET surface area measurements of activated carbons used in current electrochemical double layer capacitors. Our group has pioneered a new carbon material that we call chemically modified graphene (CMG). CMG materials are made from 1-atom thick sheets of carbon, functionalized as needed, and here we demonstrate in an ultracapacitor cell their performance. Specific capacitances of 135 and 99 F/g in aqueous and organic electrolytes, respectively, have been measured. In addition, high electrical conductivity gives these materials consistently good performance over a wide range of voltage scan rates. These encouraging results illustrate the exciting potential for high performance, electrical energy storage devices based on this new class of carbon material.

read more

Citations
More filters
Journal ArticleDOI

Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials

TL;DR: It is shown that chemically exfoliated nanosheets of MoS2 containing a high concentration of the metallic 1T phase can electrochemically intercalate ions with extraordinary efficiency and achieve capacitance values ranging from ∼400 to ∼700 F cm(-3) in a variety of aqueous electrolytes.
Journal ArticleDOI

The role of graphene for electrochemical energy storage

TL;DR: By critically analysing state-of-the-art technologies, this work aims to address the benefits and issues of graphene-based materials, as well as outline the most promising results and applications so far.
Journal ArticleDOI

Carbons and Electrolytes for Advanced Supercapacitors

TL;DR: This review discusses the basic principles of the electrical double-layer (EDL), especially regarding the correlation between ion size/ion solvation and the pore size of porous carbon electrodes, and summarizes the key aspects of various carbon materials synthesized for use in supercapacitors.
Journal ArticleDOI

Supercapacitors Based on Flexible Graphene/Polyaniline Nanofiber Composite Films

TL;DR: Supercapacitor devices based on this conductive flexible composite film showed large electrochemical capacitance at a discharge rate of 0.3 A g(-1) and exhibited greatly improved electrochemical stability and rate performances.
Journal ArticleDOI

Review on supercapacitors: Technologies and materials

TL;DR: In this article, the technologies and working principles of different materials used in supercapacitors are explained, together with brief explanations of their properties, such as specific surface area and capacitance values.
References
More filters
Journal ArticleDOI

Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide

TL;DR: In this paper, a colloidal suspension of exfoliated graphene oxide sheets in water with hydrazine hydrate results in their aggregation and subsequent formation of a high surface area carbon material which consists of thin graphene-based sheets.
Journal ArticleDOI

Graphene-based composite materials

TL;DR: The bottom-up chemical approach of tuning the graphene sheet properties provides a path to a broad new class of graphene-based materials and their use in a variety of applications.
Journal ArticleDOI

Processable aqueous dispersions of graphene nanosheets

TL;DR: It is reported that chemically converted graphene sheets obtained from graphite can readily form stable aqueous colloids through electrostatic stabilization, making it possible to process graphene materials using low-cost solution processing techniques, opening up enormous opportunities to use this unique carbon nanostructure for many technological applications.
Journal ArticleDOI

Preparation and Characterization of Graphene Oxide Paper

TL;DR: Graphene oxide paper is reported, a free-standing carbon-based membrane material made by flow-directed assembly of individual graphene oxide sheets that outperforms many other paper-like materials in stiffness and strength.
Book

Electrochemical Supercapacitors : Scientific Fundamentals and Technological Applications

TL;DR: In this paper, the double-layer and surface functionalities at Carbon were investigated and the double layer at Capacitor Electrode Interfaces: its structure and Capacitance.
Related Papers (5)