scispace - formally typeset
Journal ArticleDOI

Graphite Nanoplatelet−Epoxy Composite Thermal Interface Materials

Reads0
Chats0
TLDR
In this article, the performance of a few graphene layer n ∼ 4, with a thickness of ∼ 2 nm, was investigated for epoxy composites and it was shown that the G4 GNPs provide a thermal conductivity enhancement of more than 3000% (loading of ∼25 vol %).
Abstract
Natural graphite was intercalated, thermally exfoliated, and dispersed in acetone to prepare graphite nanoplatelets (GNPs, Gn) of controlled aspect ratio. Thermal conductivity measurements indicate that few graphene layer Gn, where n ∼ 4, with a thickness of ∼2 nm function as a very efficient filler for epoxy composites. When embedded in an epoxy matrix, the G4 GNPs provide a thermal conductivity enhancement of more than 3000% (loading of ∼25 vol %), and a thermal conductivity κ = 6.44 W/mK, which surpasses the performance of conventional fillers that require a loading of ∼70 vol % to achieve these values. We attribute the outstanding thermal properties of this material to a favorable combination of the high aspect ratio, two-dimensional geometry, stiffness, and low thermal interface resistance of the GNPs.

read more

Citations
More filters
Posted Content

Noncured Graphene Thermal Interface Materials: Minimizing the Thermal Contact Resistance

TL;DR: In this paper, the authors investigated the thermal contact resistance of noncuring graphene thermal interface materials with the surfaces characterized by different degree of roughness and found that the surface roughness is a significant factor in the increase in thermal contact resistances.
Journal ArticleDOI

Laser-engineering of heterostructured graphitic petals on carbon nanotubes forests (GP/CNTF) for robust thermal interface capable of swift heat transfer

TL;DR: In this paper , the authors proposed a hybrid of carbon nanotubes and graphene petals for CNT forests (CNTF), but petals grown out-of-plane gave compromised heat transfer when integrated to heat sink.
Patent

Method for producing heat-dissipating sheet having high thermal conductivity

Kagawa Seiji
TL;DR: In this article, a heat-dissipating sheet having a density of 1.9 g/cm3 or more and an in-plane thermal conductivity of 570 W/mK was obtained by repeating plural times a cycle of applying a dispersion of fine graphite particles, carbon black and an organic binder in an organic solvent to a surface of a support plate, and then drying it, to form a resin-containing composite sheet.
References
More filters
Journal ArticleDOI

Two-dimensional gas of massless Dirac fermions in graphene

TL;DR: This study reports an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation and reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions.
Journal ArticleDOI

Graphene-based composite materials

TL;DR: The bottom-up chemical approach of tuning the graphene sheet properties provides a path to a broad new class of graphene-based materials and their use in a variety of applications.
Journal ArticleDOI

Experimental observation of the quantum Hall effect and Berry's phase in graphene

TL;DR: In this paper, an experimental investigation of magneto-transport in a high-mobility single layer of Graphene is presented, where an unusual half-integer quantum Hall effect for both electron and hole carriers in graphene is observed.
Journal Article

Experimental Observation of Quantum Hall Effect and Berry's Phase in Graphene

TL;DR: An experimental investigation of magneto-transport in a high-mobility single layer of graphene observes an unusual half-integer quantum Hall effect for both electron and hole carriers in graphene.
Journal ArticleDOI

Electronic Confinement and Coherence in Patterned Epitaxial Graphene

TL;DR: In this paper, a single epitaxial graphene layer at the silicon carbide interface is shown to reveal the Dirac nature of the charge carriers, and all-graphene electronically coherent devices and device architectures are envisaged.
Related Papers (5)