scispace - formally typeset
Journal ArticleDOI

Graphite Nanoplatelet−Epoxy Composite Thermal Interface Materials

Reads0
Chats0
TLDR
In this article, the performance of a few graphene layer n ∼ 4, with a thickness of ∼ 2 nm, was investigated for epoxy composites and it was shown that the G4 GNPs provide a thermal conductivity enhancement of more than 3000% (loading of ∼25 vol %).
Abstract
Natural graphite was intercalated, thermally exfoliated, and dispersed in acetone to prepare graphite nanoplatelets (GNPs, Gn) of controlled aspect ratio. Thermal conductivity measurements indicate that few graphene layer Gn, where n ∼ 4, with a thickness of ∼2 nm function as a very efficient filler for epoxy composites. When embedded in an epoxy matrix, the G4 GNPs provide a thermal conductivity enhancement of more than 3000% (loading of ∼25 vol %), and a thermal conductivity κ = 6.44 W/mK, which surpasses the performance of conventional fillers that require a loading of ∼70 vol % to achieve these values. We attribute the outstanding thermal properties of this material to a favorable combination of the high aspect ratio, two-dimensional geometry, stiffness, and low thermal interface resistance of the GNPs.

read more

Citations
More filters
Journal ArticleDOI

Epoxy nanocomposites simultaneously strengthened and toughened by hybridization with graphene oxide and block ionomer

TL;DR: In this article, a simple one-pot blending method was used, in which both graphene oxide and a block ionomer were blended with epoxy resin, and the results showed that increases of ∼200% in fracture energy (GIC), 48% in uniaxial tensile strength (σt) and 340% in tensile strain could be achieved by incorporating 1.0 wt% graphene oxide into an epoxy matrix with 20µwt% sulfonated polystyrene-block poly(ethylene-co-butylene)-block-polysty
Journal ArticleDOI

Zweidimensionale Polymere: nur ein Traum von Synthetikern?

TL;DR: In this paper, aufsatz liefert einen Uberblick uber bisherige Strategien sowie eine Analyse, wie die Synthese eines 2D-Polymers wohl gelingen konnte.
Journal ArticleDOI

Exergy analysis of a shell-and-tube heat exchanger using graphene oxide nanofluids

TL;DR: In this paper, the performance of graphene oxide nanoparticles in a shell-and-tube heat exchanger was studied experimentally and the effect of nanofluid concentration, flow rates, temperature inlet and flow regime on the system's exergy loss was studied.
Journal ArticleDOI

Magnetic graphene nanocomposites: electron conduction, giant magnetoresistance and tunable negative permittivity

TL;DR: In this paper, surface-adhered magnetic nanoparticles (NPs) are synthesized by a facile thermal-decomposition method and two different sized graphenes (Gra-10 and Gra-40) are used.
Journal ArticleDOI

Bottom-up Design of Three-Dimensional Carbon-Honeycomb with Superb Specific Strength and High Thermal Conductivity

Abstract: Low-dimensional carbon allotropes, from fullerenes, carbon nanotubes, to graphene, have been broadly explored due to their outstanding and special properties. However, there exist significant challenges in retaining such properties of basic building blocks when scaling them up to three-dimensional materials and structures for many technological applications. Here we show theoretically the atomistic structure of a stable three-dimensional carbon honeycomb (C-honeycomb) structure with superb mechanical and thermal properties. A combination of sp2 bonding in the wall and sp3 bonding in the triple junction of C-honeycomb is the key to retain the stability of C-honeycomb. The specific strength could be the best in structural carbon materials, and this strength remains at a high level but tunable with different cell sizes. C-honeycomb is also found to have a very high thermal conductivity, for example, >100 W/mK along the axis of the hexagonal cell with a density only ∼0.4 g/cm3. Because of the low density and ...
References
More filters
Journal ArticleDOI

Two-dimensional gas of massless Dirac fermions in graphene

TL;DR: This study reports an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation and reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions.
Journal ArticleDOI

Graphene-based composite materials

TL;DR: The bottom-up chemical approach of tuning the graphene sheet properties provides a path to a broad new class of graphene-based materials and their use in a variety of applications.
Journal ArticleDOI

Experimental observation of the quantum Hall effect and Berry's phase in graphene

TL;DR: In this paper, an experimental investigation of magneto-transport in a high-mobility single layer of Graphene is presented, where an unusual half-integer quantum Hall effect for both electron and hole carriers in graphene is observed.
Journal Article

Experimental Observation of Quantum Hall Effect and Berry's Phase in Graphene

TL;DR: An experimental investigation of magneto-transport in a high-mobility single layer of graphene observes an unusual half-integer quantum Hall effect for both electron and hole carriers in graphene.
Journal ArticleDOI

Electronic Confinement and Coherence in Patterned Epitaxial Graphene

TL;DR: In this paper, a single epitaxial graphene layer at the silicon carbide interface is shown to reveal the Dirac nature of the charge carriers, and all-graphene electronically coherent devices and device architectures are envisaged.
Related Papers (5)