scispace - formally typeset
Journal ArticleDOI

Graphite Nanoplatelet−Epoxy Composite Thermal Interface Materials

Reads0
Chats0
TLDR
In this article, the performance of a few graphene layer n ∼ 4, with a thickness of ∼ 2 nm, was investigated for epoxy composites and it was shown that the G4 GNPs provide a thermal conductivity enhancement of more than 3000% (loading of ∼25 vol %).
Abstract
Natural graphite was intercalated, thermally exfoliated, and dispersed in acetone to prepare graphite nanoplatelets (GNPs, Gn) of controlled aspect ratio. Thermal conductivity measurements indicate that few graphene layer Gn, where n ∼ 4, with a thickness of ∼2 nm function as a very efficient filler for epoxy composites. When embedded in an epoxy matrix, the G4 GNPs provide a thermal conductivity enhancement of more than 3000% (loading of ∼25 vol %), and a thermal conductivity κ = 6.44 W/mK, which surpasses the performance of conventional fillers that require a loading of ∼70 vol % to achieve these values. We attribute the outstanding thermal properties of this material to a favorable combination of the high aspect ratio, two-dimensional geometry, stiffness, and low thermal interface resistance of the GNPs.

read more

Citations
More filters
Journal ArticleDOI

Graphene Thermal Interface Materials – State-of-the-Art and Application Prospects

TL;DR: In this article , the authors provide a summary of the fundamentals of thermal management, outline the state-of-the-art in the field of thermal interface materials, and describe recent developments in graphene-based non-curing and curing composites used for thermal management.
Book ChapterDOI

Thermal properties and applications

TL;DR: The thermal properties and related applications of graphene and reduced graphene oxide are reviewed in this paper, where different applications are explained, and thermal interface material, nanofluids, container of the phase transition materials for thermal energy storage, and thermoelectric material are also discussed.
Proceedings ArticleDOI

Cure reaction of epoxy resins catalyzed by graphite-based nanofiller

TL;DR: In this article, a comparative thermal analysis of epoxy resins filled with an exfoliated graphite oxide eGO was conducted, and the main aim was to understand the molecular origin of the influence of eGO on the Tg of epoxide resins.
Journal ArticleDOI

Disperse-and-Mix: Oil as an 'Entrance Door' of Carbon-Based Fillers to Rubber Composites.

TL;DR: In this paper, the authors used oil as an "entrance door" for loading rubber with carbon-based fillers of different size and dimensionalities: 1D carbon nanotubes (CNTs), 2D graphene nanoplatelets (GNPs), and 3D graphite.
References
More filters
Journal ArticleDOI

Two-dimensional gas of massless Dirac fermions in graphene

TL;DR: This study reports an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation and reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions.
Journal ArticleDOI

Graphene-based composite materials

TL;DR: The bottom-up chemical approach of tuning the graphene sheet properties provides a path to a broad new class of graphene-based materials and their use in a variety of applications.
Journal ArticleDOI

Experimental observation of the quantum Hall effect and Berry's phase in graphene

TL;DR: In this paper, an experimental investigation of magneto-transport in a high-mobility single layer of Graphene is presented, where an unusual half-integer quantum Hall effect for both electron and hole carriers in graphene is observed.
Journal Article

Experimental Observation of Quantum Hall Effect and Berry's Phase in Graphene

TL;DR: An experimental investigation of magneto-transport in a high-mobility single layer of graphene observes an unusual half-integer quantum Hall effect for both electron and hole carriers in graphene.
Journal ArticleDOI

Electronic Confinement and Coherence in Patterned Epitaxial Graphene

TL;DR: In this paper, a single epitaxial graphene layer at the silicon carbide interface is shown to reveal the Dirac nature of the charge carriers, and all-graphene electronically coherent devices and device architectures are envisaged.
Related Papers (5)