scispace - formally typeset
Journal ArticleDOI

Graphite Nanoplatelet−Epoxy Composite Thermal Interface Materials

Reads0
Chats0
TLDR
In this article, the performance of a few graphene layer n ∼ 4, with a thickness of ∼ 2 nm, was investigated for epoxy composites and it was shown that the G4 GNPs provide a thermal conductivity enhancement of more than 3000% (loading of ∼25 vol %).
Abstract
Natural graphite was intercalated, thermally exfoliated, and dispersed in acetone to prepare graphite nanoplatelets (GNPs, Gn) of controlled aspect ratio. Thermal conductivity measurements indicate that few graphene layer Gn, where n ∼ 4, with a thickness of ∼2 nm function as a very efficient filler for epoxy composites. When embedded in an epoxy matrix, the G4 GNPs provide a thermal conductivity enhancement of more than 3000% (loading of ∼25 vol %), and a thermal conductivity κ = 6.44 W/mK, which surpasses the performance of conventional fillers that require a loading of ∼70 vol % to achieve these values. We attribute the outstanding thermal properties of this material to a favorable combination of the high aspect ratio, two-dimensional geometry, stiffness, and low thermal interface resistance of the GNPs.

read more

Citations
More filters
Journal ArticleDOI

Graphene and Graphene Oxide: Synthesis, Properties, and Applications

TL;DR: An overview of the synthesis, properties, and applications of graphene and related materials (primarily, graphite oxide and its colloidal suspensions and materials made from them), from a materials science perspective.
Journal ArticleDOI

Thermal properties of graphene and nanostructured carbon materials

TL;DR: The thermal properties of carbon materials are reviewed, focusing on recent results for graphene, carbon nanotubes and nanostructured carbon materials with different degrees of disorder, with special attention given to the unusual size dependence of heat conduction in two-dimensional crystals.
Journal ArticleDOI

Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors

TL;DR: A chemical route to produce graphene nanoribbons with width below 10 nanometers was developed, as well as single ribbons with varying widths along their lengths or containing lattice-defined graphene junctions for potential molecular electronics.
Journal ArticleDOI

Thermal Properties of Graphene, Carbon Nanotubes and Nanostructured Carbon Materials

TL;DR: In this paper, the authors review thermal and thermoelectric properties of carbon materials focusing on recent results for graphene, carbon nanotubes and nanostructured carbon materials with different degrees of disorder.
Journal ArticleDOI

Graphene: The New Two-Dimensional Nanomaterial

TL;DR: The status of graphene research is presented, which includes aspects related to synthesis, characterization, structure, and properties.
References
More filters
Journal ArticleDOI

Electrochemical characterization of binderless, recompressed exfoliated graphite electrodes: electron-transfer kinetics and diffusion characteristics.

TL;DR: Exfoliated graphite (EG) is prepared by the thermal exfoliation of graphite intercalation compounds at different temperatures and it is found that the electron-transfer kinetics and the diffusion of K(4)[Fe(CN)(6)] are affected by the nature of the EG surface while that of iron(II)(1,10-phenanthroline)(3) and cobalt(II).
Journal ArticleDOI

Chemically functionalised exfoliated graphite: a new bulk modified, renewable surface electrode

TL;DR: Graphite particles are exfoliated and chemically functionalised to covalently attach electroactive molecules and subsequently pressed in the form of a pellet, without the use of a binder, to yield a bulk modified, renewable surface electrode material as mentioned in this paper.
Related Papers (5)