scispace - formally typeset
Journal ArticleDOI

Graphite Nanoplatelet−Epoxy Composite Thermal Interface Materials

Reads0
Chats0
TLDR
In this article, the performance of a few graphene layer n ∼ 4, with a thickness of ∼ 2 nm, was investigated for epoxy composites and it was shown that the G4 GNPs provide a thermal conductivity enhancement of more than 3000% (loading of ∼25 vol %).
Abstract
Natural graphite was intercalated, thermally exfoliated, and dispersed in acetone to prepare graphite nanoplatelets (GNPs, Gn) of controlled aspect ratio. Thermal conductivity measurements indicate that few graphene layer Gn, where n ∼ 4, with a thickness of ∼2 nm function as a very efficient filler for epoxy composites. When embedded in an epoxy matrix, the G4 GNPs provide a thermal conductivity enhancement of more than 3000% (loading of ∼25 vol %), and a thermal conductivity κ = 6.44 W/mK, which surpasses the performance of conventional fillers that require a loading of ∼70 vol % to achieve these values. We attribute the outstanding thermal properties of this material to a favorable combination of the high aspect ratio, two-dimensional geometry, stiffness, and low thermal interface resistance of the GNPs.

read more

Citations
More filters
Journal ArticleDOI

Hydrothermal Dehydration for the “Green” Reduction of Exfoliated Graphene Oxide to Graphene and Demonstration of Tunable Optical Limiting Properties

TL;DR: In this article, a simple, clean, and controlled hydrothermal dehydration route to convert graphene oxide (GO) to stable graphene solution was reported, which has the combined advantages of removing oxygen functional groups from GO and repairing the aromatic structures.
Journal ArticleDOI

Enhanced Mechanical Properties of Graphene-Based Poly(vinyl alcohol) Composites

TL;DR: In this article, a facial aqueous solution was used to extract fully exfoliated graphene nanosheets and polyvinyl alcohol (PVA) for the preparation of polymer nanocomposites.
Journal ArticleDOI

Graphene–Multilayer Graphene Nanocomposites as Highly Efficient Thermal Interface Materials

TL;DR: The modeling results suggest that graphene-multilayer graphene nanocomposite used as the thermal interface material outperforms those with carbon nanotubes or metal nanoparticles owing to graphene's aspect ratio and lower Kapitza resistance at the graphene-matrix interface.
Journal ArticleDOI

Emerging challenges and materials for thermal management of electronics

TL;DR: In this paper, a number of cubic crystals, two-dimensional layered materials, nanostructure networks and composites, molecular layers and surface functionalization, and aligned polymer structures are examined for potential applications as heat spreading layers and substrates, thermal interface materials, and underfill materials in future-generation electronics.
Journal ArticleDOI

Graphene-based nanomaterials for energy storage

TL;DR: In this article, the authors discuss the progress that has been accomplished in the development of chemical, electrochemical, and electrical energy storage systems using graphene and summarize the theoretical and experimental work on graphene-based hydrogen storage systems, lithium batteries, and supercapacitors.
References
More filters
Journal ArticleDOI

Two-dimensional gas of massless Dirac fermions in graphene

TL;DR: This study reports an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation and reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions.
Journal ArticleDOI

Graphene-based composite materials

TL;DR: The bottom-up chemical approach of tuning the graphene sheet properties provides a path to a broad new class of graphene-based materials and their use in a variety of applications.
Journal ArticleDOI

Experimental observation of the quantum Hall effect and Berry's phase in graphene

TL;DR: In this paper, an experimental investigation of magneto-transport in a high-mobility single layer of Graphene is presented, where an unusual half-integer quantum Hall effect for both electron and hole carriers in graphene is observed.
Journal Article

Experimental Observation of Quantum Hall Effect and Berry's Phase in Graphene

TL;DR: An experimental investigation of magneto-transport in a high-mobility single layer of graphene observes an unusual half-integer quantum Hall effect for both electron and hole carriers in graphene.
Journal ArticleDOI

Electronic Confinement and Coherence in Patterned Epitaxial Graphene

TL;DR: In this paper, a single epitaxial graphene layer at the silicon carbide interface is shown to reveal the Dirac nature of the charge carriers, and all-graphene electronically coherent devices and device architectures are envisaged.
Related Papers (5)